CS 269Q) Project Final Report

Nathan Dalal, Hubert Teo
{nathanhd, hteo}@stanford.edu

June 8, 2019

1 Abstract

We present an application of Grover’s algorithm to the 3-SAT problem, and verify the resulting square-root speedup
over the classical search. We achieve this with reductions from CNFs to phase-flip oracles with depth linear in
the number of gates and boolean variables. These reductions were implemented in pyQuil. To optimize the oracle
circuits, we evaluated different circuit constructions: one based on Fredkin gates and four based on CCNOT. In our
comparison of these different circuit construction and compilation methods, we found that CCNOT-based solutions
require less qubits and gates. This is because they admit several tricks to reduce the total number of qubits and
gates required.

2 Background

2.1 Boolean satisfiability

The 3-SAT problem is an NP-complete problem that admits a naive O(2")-time classical solution via brute-force. A
direct application of Grover’s algorithm to the search space of Boolean variable assignments produces a (’)(2"/ 2)-time
quantum solution, which is a square-root speedup [I].

We set out to implement this square-root speedup, which leverages the general result of Grover’s search algorithm
[2]. Note that a faster O(1.153..." poly(n))-time quantum solution (based on a better classical algorithm) exists [2],
but we will only be implementing the former speedup. The focus of our project will be to optimize the reduction
from Boolean formulae to the phase-flip circuits required by Grover’s algorithm.

2.2 Grover’s Algorithm

Grover’s algorithm [2] uses a process of amplitude amplification, a method of determining which outcomes are possible
by increasing the probability amplitude of solutions marked by an indicator oracle f. This oracle, the main input to
Grover’s algorithm, is used to construct a unitary operator that flips the phase of only states representing solutions.
In our case, the oracle corresponds to a reversible version of the verifier for 3-SAT.

More generally, we require a phase-flip operator U that flips the phase of only positive results:

D EENEE
vl {|x> fa) =0

Note that this can be constructed from a bit-flip operator Uy;; which flips an ancilla qubit, by preparing the
ancilla qubit in the |—) state. Given a bit-flip operator Uy, (I @ X H)Upi(I @ HX) is a phase-flip operator:

Ubi |2} |q) = |=) [f(z) ® q)
= ([@ XH)Upi(I ® HX)|z)|0) = (I @ XH)Up;t |z) |-)
0 f(z) — 1 f(z))
V2
= (I® XH)(-1)"@ |z) |-)
= (=)@ |z) |0)

=(I®XH)|z)

Grover’s algorithm constructs a uniform superposition over all states corresponding to potential solutions. In
particular, ancillary qubits must be left in the pure |0) state, otherwise the algorithm will also find solutions cor-
responding to non-|0) ancillary qubits. Then, in each iteration, it applies the phase-flip oracle to the state, and
then applies the Grover diffusion operator to the result. The phase-flip oracle causes satisfying inputs to decrease in
amplitude, so the the average amplitude over all the states is decreased. Then, the Grover diffusion operator reflects
the amplitude of all states across the average. Hence, non-satisfying inputs (with an amplitude above the average)
decrease in amplitude, but satisfying inputs (with an amplitude below the average) increase in amplitude. It turns
out that this amplification operation only requires O(v/N) iterations to amplify any (possibly exponentially small)
initial amplitude for the satisfying input to one that is arbitrarily close to 1. Hence, after amplification, we can then
just measure the result to find that state.

2.3 Multiple solutions

It is known that for oracles with at most one solution, the optimal number of iterations to apply is 7V N, where
N = 2" is the size of the search space. However, it is also possible to handle oracles with multiple solutions. For

oracles with k solutions, the optimal number of iterations is instead %\/%. To handle oracles with a possibly

unknown number of solutions, the algorithm can be repeated using powers of two for k, which still converges to a
total number of iterations proportional to v/N.

Changing the number of iterations suffices to handle oracles with unknown numbers of solutions. Hence, in our
implementation, we restrict ourselves to the case of oracles with at most a single solution, since the circuit reduction
is independent of number of satisfying assignments in the Boolean formula.

3 Oracle Construction

3.1 AND and OR Gates

We want to find a way to 3-SAT instances, and more generally Boolean formulae in conjunctive normal form (CNF)
to reversible quantum oracles. Critical to this process is the implementation of classical AND and OR gates on
qubits. Reversible AND and OR gates can be implemented naively using Fredkin gates, which are universal. They
can also be implemented using CCNOT gates.

3.2 Fredkin reduction

The Fredkin (CSWAP) gate can be used to implement AND and OR directly by supplying an ancillary either 0 or
1 as the last wire:

CSWAP(a, b,) = {(a, b a CSWAP(a,b,0) = (a,~a Ab,a Ab)
(a,b,c) —a CSWAP(a,b,1) = (a,a V b,~(a A b))

The first circuit compilation strategy uses these gates to evaluate the Boolean circuit. For each clause, we apply
the OR reduction on pairs of qubits to produce intermediate results, and repeat until the entire clause is evaluated.
Then, we apply the AND reduction over the results of all the clauses. After the gate applying the circuit’s result to
the final ancillary qubit, the rest of the circuit prior to that gate is reversed to undo any changes to the input qubits.

However, since CSWAP also changes one of the other incoming wires, each application of CSWAP requires an
introduction of an additional ancilla qubit with the same value as the original, which can be prepared with a CNOT
gate. Furthermore, negated terms in each clause also require qubit copies for the same reason. Hence, a considerable
number of ancillary qubits are needed, though the total number of qubits is still proportional to the number of
variables and size of the formula (the total number of terms across all the clauses).

3.3 CCNOT reduction

The CCNOT gate can also be used to implement AND in a more direct fashion: CCNOT(a, b, c) = (a,b,c® (a A b)).
This is advantageous because the two input qubits a, b are not changed, so copy qubits are not required. OR. can be
implemented directly by an application of de Morgan’s identity: a V b = —(—a A —b).

As above, we apply the OR gate constructed from CCNOT multiple times to produce the result of each clause,
and then the AND gate over the clause results to evaluate the circuit. Negated terms are still handled by preparing
qubits representing the negation of each variable, and using them whenever they are referenced in a clause.

The lack of qubit copies already saves a few qubits. We apply two further independent operations to reduce the
number of qubits and gates required.

e Negation tracking (NT). Another way to handle negated terms is to only use one qubit per variable, and
apply X to it whenever its negated value is required. Furthermore, instead of reversing X eagarly after it is
used, we lazily track the variables that have been negated, and apply X only if needed.

e Clausal de Morgan (dM). Instead of directly applying OR = X; X3 X3CCNOT 12X X5 over pairs of inter-
mediate results in each clause, we apply de Morgan’s identity over the entire clause instead, so it is instead
expressed as an AND over the terms. This has the effect of eliminating redundant X operations on intermediate
results when they will negated again when taking the OR with the next term.

4 Experiment

The above provide 5 oracle constructions: one based on Fredkin gates, and four based on CCNOT gates with the
two optimizations (dM, NT) turned either on or off. To evaluate these oracle constructions, we generate several CNF
formulae that have a single solution, using the following two methods:

n i b
1. Random bitstrings. We generate a random bitstring b € 0,1" and create the CNF ¢(z) = A _, {x ;-
T TP 0

We sampled 5 such formulae for each n € [2,8].

2. Random 3-SAT. The above method produces formulae with only one term in each clause. To produce 3-SAT
instances, we employ the following random procedure: randomly sample a clause, and add it to the formula
if it reduces the number of satisfying assignments but does not make the formula unsatisfiable. Repeat until
only one assignment is left. We sampled 5 such formulae for each n € [2,4]. Note that this tends to produce a
formula of size exponential in the number of variables (each clause rules out a maximum of 2"~ assignments).

We also verify that the oracle produces the correct result using the implementation of Grover’s algorithm in
Rigetti’s Grove quantum algorithm library [3]. We supply the oracle and the variable qubits as parameters to the
Grover Oracle function, and it runs Grover’s Algorithm for as many iterations as is necessary to solve the problem.
The results are not deterministic, so we can determine the error rate by repeating it 1000 times. Due to computational
time constraints, we only simulated Grover’s algorithm for instances with a maximum of 25 qubits. For the same
reason, we measure the resulting number of qubits and gates used as a function of the number of variables as a proxy
for the runtime of the algorithm.

5 Results

The relatively high accuracy of producing the satisfying assignment is shown in the figure below, indicating that our
reductions are correct.

Algorithm accuracy vs. Number of Variables

-
o
=]
[]

=)
o
@

=)
o
o

°
w0
&

2 3 4 5 6 7 8
Number of variables

Algorithm accuracy

°
w0
~

=)
o
=]

Figure 1: Probability of recovering a satisfying assignment, over all sampled CNFs and oracle constructions, for
instances requiring up to 25 qubits in total.

Next, we note that the Fredkin reduction produces an unacceptable scaling of the number of ancillary qubits
required to the number of actual variables:

Fredkin: Number of variables vs. Number of qubits

40 1 L]
35
230_ L] ®
5
“g25- # Clauses
5 ® . 2
F-]] e [] e 3
g 20 °
g ® Il 4
15 1 @ 5
L] Il 6
10 4 : o -7
. - s
2 3 4 5 6 7

Number of variables

Figure 2: Total number of qubits in the circuit using the Fredkin reduction.

A 2-variable formula instance requiring 14 qubits in total, and even a bitstring formula over 8 variables requiring
over 30 qubits is very wasteful. Furthermore, it takes far too long to simulate more than 25 qubits on the QVM,
and quantum lattices with large numbers of qubits are expensive. Hence, the Fredkin reduction is not well-suited to
practical uses. We thus shift our attention to the CCNOT reduction:

CCNOT: Number of variables vs. Number of qubits

a00 CCNOT: Number of variables vs. Number of gates 5
L]
.
700 e °
o 20 ° H
600 " ° ° °
" = ° L L] L]
o
“ 500 & ° El 15] ° L] L]
S . s o .
® a0 : : : ¢ ot g 8
o P 2 Construction Type
£ 300 ® Construction Type E 0 : ° i B Fredkin
5 . Fredkin = o -+ * ¢ == cCnOT
200 : BN CCNOT ° ° ° CONOTNT
- CCNOT-NT * . y
100 ' BN CCNOT-dM 51 9 ® N CCNOT-dM
4 BN CCNOT-dM-NT
ol @ BN CCNOT-dM-NT h o
2 3 3 5 B 7 8 2 ! ¢ : ¢ ! 8

Number of variables Number of variables

(a) Clausal de Morgan results in a significant reduction

in the number of gates (b) Negation tracking results in a lower number of qubits required

Figure 3: Plots

From the above results, we can see that the number of qubits scales linearly as clauses increase and as variables
increase, which is expected. Qubits (and corresponding ancilla bits needed to model the circuit or to represent
negations) model the variables of the CNF. We can also see that the number of gates scale exponentially as more
qubits are added, which is also expected since exploring possible combinations of solutions through gate combinations
still requires exponential time. However, the number of gates is also highly dependent on the number of positive or
negated variables in the CNF, as well as the number of variables that appear in each clause of the CNF. Clausal de
Morgan and negation tracking also result in improvements in the number of ancillary qubits required as well as the
total number of gates in the circuit.

6 Code and Instructions

Download the code from the following link. Running grover_3sat.py makes the tests we did to produce our results.
If you would like to input your own CNFs, it may be a little experimental (since you should only add ones that
you know to only have one solution), you can add them in the bottom runnable section of the python file, where
there is a variable designed to add custom CNF strings. Uppercase letters are not negated, while lowercase numbers
are negated, and a space marks the end of a clause.
Thank you to the teaching team for a great quarter.

https://drive.google.com/open?id=1wr4Nh1OVMqEWZyzH-lcjMt0mrAgHVdAr

References

[1] Andris Ambainis. Quantum search algorithms. arXiv preprint quant-ph/0504012, 2005.

[2] Lov K Grover. A fast quantum mechanical algorithm for database search. arXiv preprint quant-ph/9605043,
1996.

[3] Robert S Smith, Michael J Curtis, and William J Zeng. A practical quantum instruction set architecture, 2016.

	Abstract
	Background
	Boolean satisfiability
	Grover's Algorithm
	Multiple solutions

	Oracle Construction
	AND and OR Gates
	Fredkin reduction
	CCNOT reduction

	Experiment
	Results
	Code and Instructions

