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1 Overview

Due to recent advance in quantum computing technologies with superconducting quantum chips, we
expect to solve classically intractable problems with a quantum computer in the near future. A fully quantum
algorithm might not be implemented with sufficiently high performance in the near future, as the number,
connectivity, and coherence time of qubits should be dramatically improved from the state-of-art in order
to perform quantum error correction. However, quantum-classical hybrid algorithms, such as Variational
Quantum Eigensolver (VQE) [4], can be performed with noisy qubits with the help of classical routines. In
2016, Google used 2-qubit quantum chip to calculate the ground state energy of H2 molecule [3]. In 2017,
IBM used 6-qubit chip to solve the ground state energy of H2, LiH, and BeH2 molecules [1].

In this project we use VQE to find the ground state energies of the simplest molecules, such as H2, LiH,
and BeH2, with various interactomic distances. We study the theory behind how to implement the molecular
Hamiltonian into quantum circuit. We use quantum programming language pyQuil’s WavefunctionSimula-
tor and Quantum Virtual Machine (QVM) [7] to simulate VQE in classical computer and study how the
performance of VQE depends on its methods and number of parameters. Finally, we introduce our attempts
to implement VQE on an actual Quantum Processing Unit (QPU) and address future prospects.

2 Methodology

In this research we primarily use OpenFermion [2], an open source electronic structure package. The
VQE algorithm is built and performed on the WaveFunctionSimulator, supported by quantum programming
language pyQuil [7]. Our code can be accessed at https://github.com/horraywwkd/cs269q_openfermion.

Molecular Hamiltonian in second quantization form is caclulated by quantum chemistry package Psi4,
and the result is retrieved in HDF5 container. OpenFermion reads the container and saves it in the form
of InteractionOperator object by load molecular hamiltonian function. The InteractionOperator
object is then easily converted into FermionOperator object. Then, OpenFermion’s bravyi_kitaev function
converts the FermionOperator object into QubitOperator, which is linear combination of Pauli operators.
Finally, by using the ForestOpenFermion’s qubitop_to_pyquilpauli function, we obtain the PauliSum
object representation of the molecular Hamiltonian, which can be immediately implemented as Forest QVM’s
quantum circuit.

We implement both hardware ansatz and Unitary Coupled Cluster (UCC) as ansatz states that depend
on the set of parameters 6. Hardware ansatz is easily constructed by using pyQuil’s quantum gate objects,
such as CNOT and parametrized gates RZ and RX. To implement UCC state |Ypcc) = ¢I=1"|G), we use
OpenFermion’s uccsd_generator function and forestOpenFermion’s exponentiate function.

The molecular Hamiltonian and the ansatz state implemented above compose the entire quantum circuit
used in the VQE algorithm. The circuit is run by expectation function of pyQuil’s WavefunctionSimulator.
Unlike VQE in actual quantum circuit, WavefunctionSimuator evaluates the expectation value by directly
calculating the wavefunction amplitude, thereby avoiding sampling from large number of data. The result is
then fed into the classical routine that minimizes the expectation value by finding the optimum parameters
6. Scipy package’s function minimize with L-BFGS-B method is used.

Speed of the algorithm is evaluated by the number of quantum gates in the circuit, multiplied by the
number of times the minimize function calls the circuit until convergence. Accuracy of the algorithm is
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evaluated by comparing the ground state energy calculated by VQE to the exact solution of Schrodinger’s
equation calculated classically by Psi4’s FCI method.

VQE is also implemented on Quantum Virtual Machine (QVM). QVM classically simulates Quantum
Processing Unit (QPU), which calculates the expectation value of the Hamiltonian by sampling large number
of measurements. Since the measurements are always performed in the Z-basis, rotation gates corresponding
to each Pauli term of the Hamiltonian should be appended to the quantum program.

Finally, we attempted to implement VQE on an actual QPU. QPU can be accessed by Rigetti’s quantum
cloud service, which provides access to superconducting quantum chip ’Aspen-4’. If implemented, the results
would have been affected by qubit noise and gate errors, which are not considered in our QVM simulation.

3 Results and Discussion

3.1 Performance of Hardware Ansatz VQE

We evaluate the hardware ansatz VQE by its performance on calculating the ground state energy of Hy
of various interatomic distances. Hardware anstaz state is defined as
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where U%!(0) = RZ(H‘{’Z)RX(HSJ), RZ and RX are rotation gates of qubit with respect to z and = axes, and
L is the number of layers [1]. [t a(0)) depends on 2N L parameters (6 € R2VL), where N is the number of
qubits and L is the number of layers. The number of gates required to build |¢g4(0)) is (2N + (N —1))L,
where 2N is the number of rotation gates and N — 1 is the number of two-qubit gates in Ugnr, per each
layer. For H2, N = 4.

As L increases, the available state space expands, so we expect that VQE becomes more likely to find
the ground state energy accurately. However, the computational cost also increases, as the number of gates
per each iteration of circuit increases, and the number of calls to the circuit also increases because there are
more parameters to optimize.
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Figure 1: Average and minimum of ten calculations of H2 ground state energy obtained by hardware ansatz
VQE simulated on WavefunctionSimulator. As the number of layers L increases, the ground state energy
curve becomes closer to the exact solution. When minimum is taken, VQE and exact solution curves overlap
perfectly when L > 3

Figure 1 shows the average and minimum of ten calculations of H2 ground state energy, obtained by
VQE simulated on WavefunctionSimulator. We chose the initial parameters 8° as random angles between



0 and 27. The results are compared with exact solution of Schordinger equation, obtained classically by
FCI method. As expected, the ground state energy curve becomes closer to the exact solution curve as L
increases.

Note that VQE with fewer layers can also calculate the ground state energy very accurately by chance.
However, with fewer layers, it is more likely for the VQE to converge to a local minima, as the state space
of [ 4(0)) is not large enough. This explains the ’cusps’ in Figure 1.

For practical use of VQE, minimum value obtained from repeated calculations of ground state energy
should be taken, instead of average value. For the case of H2, minimum of ten repeated calculations with
L = 3 is sufficient enough to obtain very accurate (relative error < le-10) ground state energies. For more
complicated molecules with larger N, we expect the required number of layers and repetitions to increase.

Figure 2 shows the computation cost and accuracy of hardware ansatz VQE with number of layers 1 to
5. Computation cost is represented by the total number of gates until VQE converges to minimum. Number
of calls to the circuit is multiplied with number of gates in the circuit, which is 36 + (3N — 1)L. Note that
the exact number of calls may depend on the optimization method, which is L-BFGS-B in this research.
Accuracy is represented by the relative error of average energy calculated by VQE to energy calculated by
exact solution.
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Figure 2: Computation cost and accuracy of hardware ansatz VQE simulated on WavefunctionSimulator,
with number of layers 1 to 5. Computation cost is represented by the total number of gates, and accuracy
is measured as 1 — |EvQr — Fegact|/Eexact- The average and standard error is taken over all repeated
calculations at all atomic distances. As expected, both computation cost and accuracy increases as number
of layers increases.

Computation cost grows quadratically with number of layers. This is because both the number of gates
(used to prepare |1y 4(0))) in the circuit and the number of calls both increase. Average accuracy reaches
> 97% at L = 3. For practical use, minimum value from repeated calculations should be obtained, which
will give much higher accuracy.

For future research, performance of hardware ansatz VQE with larger number of qubits N should be
investigated. Although the number of parameters is linear with N, we do not know how the minimum
number of layers L required for obtaining accurate ground state energy scales with N. This will help
estimate the resources required to perform hardware ansatz VQE for more complicated molecules.

3.2 Performance of Unitary Coupled Cluster VQE

We evaluate the Unitary Coupled Cluster VQE by its performance on calculating the ground state
energy of H2 of various interatomic distances. The UCC state is defined as |[Yycc) = eI-17 |G), where
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|G) is the reference state, usually chosen as the Hatree-Fock ground state, and @ is the Fermion annihilation
operator acting on the subscript site. The occ and virt spaces are the sites occupied and unoccupied by |G)
5, 6.

For UCC state with degree 1 (T' = T}), there are two parameters, and with degree 2 (T' = Ty +T3), there
are three parameters. Note that |G) = |1100)__. in the Fermion occupation basis should be converted into
|G) =]1010) in the Bravyi-Kitaev qubit basis.
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Figure 3: Average of ten calculations of H2 ground state energy obtained by UCC ansatz VQE simulated
on WavefunctionSimulator. Degree=2 curve overlaps perfectly with the exact solution curve.

Figure 3 shows the average of ten calculations of H2 ground state energy, obtained by VQE simulated
on WavefunctionSimulator. We chose the initial parameters 8° as random numbers between -0.25 and 0.25.
The results are compared with exact solution of Schordinger equation obtained classically.

1-UCC VQE predicts the ground state energies with average accuracy 0.9777, and 2-UCC VQE ground
state energy curve perfectly agrees with the exact solution. This is expected, as 2-UCC state encodes
all the one-body and two-body interactions under symmetries such as number of fermions and total spin
conservation.

Table 1 shows the computation cost and accuracy of VQE with both hardware ansatz and UCC. Compu-
tation cost is represented by total number of gates, which is average number of calls to the circuit multiplied
with number of gates in the circuit. Accuracy is represented by the average relative error to exact solution.
Note that the exact number of calls may depend on the optimization method, which is L-BFGS-B in this
case.

When solving the H2 molecule, computation cost is significantly lower with UCC than hardware ansatz.
This is because UCC exploits the symmetries of the molecule and has much fewer parameters than hard-
ware ansatz. However, this is not guaranteed to be true for more complicated molecules, as the number of
parameters of 2-UCC state scales with number of qubits N in the order of O(N*).



Number of calls Total number of gates Accuracy

4-layer HA 1973 134181 0.9854

5-layer HA 3788 287900 0.9974
1-UCC 34 2402 0.9777
2-UCC 44 6227 1

Table 1: Computation cost and accuracy of hardware ansatz and UCC VQE simulated on Wavefunction-
Simulator. Total number of gates is number of calls times number of qubits in the circuit. The numbers are
averaged over all atomic distances. The relative error of 2-UCC is less than 1le-10, which is dominated by
floating point error.

Figure 4 shows the ground state energies of LiH and BeH2, obtained by VQE simulated on Wavefunc-
tionSimulator. Only degree 1-UCC is calculated, as optimization with degree 2-UCC is computationally too
expensive. As in H2, the curves reasonably agree with the exact solutions, but is not exact, because the
two-body interactions are not included in the 1-UCC state. Average accuracy of LiH and BeH2 calculation
is 0.9967 and 0.9957, each, relative to the exact solution.
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Figure 4: Calculations of ground state energies of LiH and BeH2, obtained by 1-UCC ansatz VQE simulated
on WavefunctionSimulator. The curves are in decent agreement with the exact solution.

3.3 VQE on Quantum Virtual Machine and QPU

We implement the VQE on pyQuil’s Quantum Virtual Machine. Unlike WavefunctionSimulator, QVM
evaluates the expectation value of the Hamiltonian by taking the mean of large number of samples from
repeated measurements.

According to [1], the error e of mean energy (H) after taking S samples is given by:

6:\/Vm;[H]S\/T|hém| @

where T is the number of Pauli terms and |hy,q.| is the absolute value of the largest Pauli coefficient. We use
S = 100 and set the tolerance of minimization algorithm to 0.1, so that we calculate the energies with € ~ 0.1.
Note that the sampling overhead can be reduced by using techniques such as simplifying the Hamiltonian
and grouping Pauli operators [1].
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Figure 5: Calculations of ground state energies of H2, obtained by degree 1-UCC ansatz VQE simulated
on Quantum Virtual Machine. The results are compared with WavefunctionSimulator results and exact
solution. Error bars represent the energy error ¢ due to small number of sampling.

The results of QVM simulation are displayed in Figure 5. The general tendency matches the solution,
and some points agree with the WavefunctionSimulator results. The average accuracy relative to the exact
solution is 0.8667, which is lower than WavefunctionSimulator accuracy 0.9974. We expect that the accuracy
will increase to the WavefunctionSimulator level as we increase the number of samples S.

We attempted to run VQE on a QPU, accessed through Rigetti’s quantum cloud service. However, the
runtime was much slower than QVM simulation, so we could not perform the algorithm. Simulation with
lattice QVM, which models the connections of Rigetti’s quantum chip, indicates that limited connections
of the chip leads to the program being compiled into more complicated circuit. This is because the chip
lattice does not have four qubits that are all mutually connected to each other. We should either simplify the
program so that it does not require all mutual connections, or use a quantum chip with better connectivity,
in order to run the algorithm faster.

If VQE works with QPUs, quantum noise, gate errors, and readout errors will also contribute to fluc-
tuations of expectation value, so larger S will be required. The accuracy will decrease from QVM results.
However, as the number of qubit N increases, exponential speedup in evaluating the Hamiltonian will over-
come the disadvantages.

4 Conclusion

Variational Quantum Eigensolver in quantum chemistry is one of the most promising and realistic ap-
plications of quantum computers in the near future. By using open source quantum chemistry packages
such as Psi4 and OpenFermion, we implemented the molecular Hamiltonian into quantum circuit. Second
quantization formalism and Bravyi-Kitaev transformation are used. Then, VQE is run with the circuit by
the quantum programming language pyQuil to find the ground state energy of the Hamiltonian.

Hardware ansatz and Unitary Coupled Cluster are the ansatz states that are used in VQE to solve quan-
tum chemistry problem. The computation cost and accuracy of VQE depends on the choice of ansatz state
and its attribute (hardware ansatz: number of layer, UCC: degree). When VQE is simulated on Wavefunc-



tionSimulator to solve H2 molecule, hardware ansatz with three layers and UCC with degree 2 yield accurate
ground state energies. UCC has significantly lower computational cost than hardware ansatz, but there is
no guarantee that this is true for solving more complicated molecules. Ground state energies of LiH and
BeH2 are also calculated using degree 1-UCC.

VQE is also performed on Quantum Virtual Machine, but due to limited number of sampling, we could
only achieve ~ 87% accuracy. We could not perform VQE on actual QPU due to limited qubit connection
of the chip.

In general, although we successfully calculated the ground state energies of simple molecules in VQE with
various methods and parameters, the number of parameters, iterations, and gates grow fast with the size of
molecule. Sampling overhead and noise are also possible obstacles. It is unclear how the computation cost
and accuracy of VQE scales with the number of qubits N. Limited connectivity between qubits in the chip
lattice also complicates the circuit.

However, note that we did not simplify the Hamiltonian to reduce N [, 3], or use 'grouping Pauli oper-
ators’ technique [1] to reduce the sampling overhead. For simple molecules such as H2, LiH, and BeH2, the
size of the circuit can be reduced to scale that is tractable with existing quantum chips. Further research
could be done on how to generalize these simplifying tricks for larger molecules, and how much computational
resource is required for a VQE to outperform classical algorithms.

We agree that both our code and project report be posted publicly on the course website.
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