A Quantum Phase Estimation
Approach to the Traveling Salesman Problem

Vik Pattabi

vpattabi@stanford.edu

June 6, 2019

1 Introduction

The Traveling Salesman Problem (TSP) asks the following: ”Given a network representing a list of cities
and with edges weighted as the distance between each pair of cities (if connected), what is the shortest
possible route that visits each city exactly once and returns home?”. This NP-hard problem is a classic
question in combinatorial optimization. Although a large number of heuristic and exact approaches are
known, it remains unproven that a solution can be found for TSP that runs in even O(1.9999") [5].

Consequently, emerging quantum optimization algorithms seem promising in the context of designing
more efficient TSP solvers. One such approach is [I]’s notion of a quantum approximate optimization
algorithm. [2] takes this idea further with the quantum alternating operator ansatz (QAOA) which yields
more families of operators than those formulated in [1]’s work. Unfortunately, these algorithms necessitate
at minimum n? qubits given a world with n cities to construct the QAOA mapping; even on extremely
small worlds (such as size 4 or 5), this is an intractable number of qubits.

By contrast, [1] posits a quantum phase estimation approach to TSP. Applying the quantum phase estima-
tion algorithm on specific eigenstates which represent combinations of distance-phases builds a mapping
from Hamiltonian cycles in the network to oath lengths easily allowing for path length minimization. Fur-
thermore, this algorithm requires less than n? qubits. This paper details an implementation of the quantum
phase estimation approach in [1] and presents results and analysis of running this TSP solver on various
4-node networks.

2 Algorithm

The quantum phase estimation algorithm (also referred to as quantum eigenvalue estimation) can be used
to estimate the eigenvalue (or phase) of an eigenvector of a unitary operator. Based on work by [1], I
model the distances between cities as phases by transforming the city network’s adjacency matrix. I then
construct unitary operators whose eigenvalues are various combinations of these phases such that each
combination represents a Hamiltonian cycle on the original network. Finally, selecting the eigen-state
corresponding to the minimum eigenvalue yields the path of lowest cost in the network. The specifics of
each step in this process are below.

2.1 Setting up the unitary operators

Given an adjacency matrix of size 4x4 such as:

$11 P12 P13 P14

| P21 P22 @23 P24

A= $31 P32 P33 P34 (1)
a1 Qa2 Pa3 Paa

we can construct a phase matrix P such that P,;, = e'®ab. Then, we construct 4 4z4 unitary operators
U; from P such that (Uj)rr = [Pk As noted in [1], the tensor product of the n U; operators U =
Uy ® Us... ® Uy, will also be a unitary matrix, as each of its components is a diagonal unitary matrix.

2.2 Quantum Phase Estimation

The quantum phase estimation (QPE) circuit operates on two registers of qubits. The lower register is
repeatedly operated on by a controlled-Uf operator controlled by qubits in the upper register; an inverse
quantum fourier transform is then applied to the upper register qubits which serve as the estimator qubits
for an n-bit estimate of the phase 6. Equation 2 presents a sample of this circuit operating on eigenvector
|1) using 2 qubits for phase estimation.

0) (H]| (2)
QFT

0) —{H]

) ——— 0 —-u? c-u?

2.3 The Quantum Fourier Transform

The final step of QPE is the Quantum Fourier Transform (QFT), a quantum analog to the inverse discrete
Fourier transform. The QFT circuit uses Hadamard and controlled-phase shift gates where the phase gate
in the latter case is defined by [3] as:

1 0

Ry, = [0 Wm] where wy, := e#™/2" (3)

Equation 4 demonstrates an implementation of this circuit on 3 qubits (indexed from i € 1,2, 3). Although
this is only half the number of estimator qubits used for the experiments ran in this paper, the QFT circuit

is easily generalizable. Specifically, (n — i) Ry, gates are applied on a given qubit ¢ beginning with m = 2
and continuing to m = (n — 7).

1) ——{H | R[] Bs (4)
|s) [H|— Ry
|z3) @

2.4 Benefits over QAOA

Unlike the QAOA approach which requires n? qubits, this approach only requires nlogy n qubits for charac-
terizing the eigenstate. Specifically, each path consists of n qubits represented by log, n bits. Consequently,
the total number of qubits required for the QPE approach is nlogs n + k where k is the number of qubits
used for estimation.

3 Data

Due to the proof-of-concept nature of this project, only small networks were used to evaluate the imple-
mented algorithm. Specifically, symmetric fully-connected networks of 4 nodes were used for this experi-
ment. An example of one such network can be found in Figure 1.

Figure 1
{'
w%ﬁ
% %3
- X 38,
) e Gy,
© 2 S8
o =)Jo
poA
$ % 5
[
5 2,
§
~
% 5]
& k& il
q‘? % 3\:\6
I
& \ g g
55! 543 i
e O)
e i o
/ 1371}
34859602
wweight's 0.6542
{weigh

Figure 1: A sample graph randomly generated by data.py. Note that all edge weights are less than /2
to limit the maximum phase value.

The network need not be fully connected. However, as the network’s adjacency graph informs the creation
of the U operator, representing the absence of edges in the adjacency matrix is tricky, which is why this
paper focused on fully connected networks. One possible technique to do so sets all non-existent edge
indices in the matrix to be 7/2 (the maximum allowed edge weight given a 4-node network in order to
limit the total phase as less than 2m).

4 Implementation Details

4.1 Source Code

My implementation of this algorithm (along with other project-relevant code) can be found here or on my
GitHub at https://github.com/vikpattabi/QuantumTSP. The repository includes the core solver.py
and three helper modules (data, tsp_funcs and quantum funcs) which implement helper functions for
generating sample graphs, creating the unitary operators, and building QUIL programs to be run on a
QVM. The repository README includes more information about setting up and running the project.

4.2 Gate Implementations

[1] implements the above circuits using the ul and r,, gates native to IBM’s quantum experience architec-
ture. By contrast, I elected to use pyQuil’s defGate command to define these gates from numpy matrices

https://github.com/vikpattabi/QuantumTSP

as can be seen in quantum _funcs.py. Furthermore, I used Hadamard gates to entangle the estimator
qubits at the start of each program and X gates on select state qubits to ’encode’ specific eigen-states to
test. This design choice became problematic when attempting to incorporate a noise model and analyze
its effects.

4.3 Inspecting Possible Eigenstates

Given the use of a fully-connected 4-node network, it is clear that (n—1)! possible Hamiltonian cycles exist.
Note that counting the number of Hamiltonian cycles in this case is akin to determining the number of
circular permutations of 4 items. This is because various different standard permutations (node orderings)
are actually equivalent cycles that are simply shifted (e.g. 0 =1 —2 —3and 1 -2 — 3 — 0).

As the phase estimation algorithm tests each eigenstate individually, it was necessary to list all 6 eigenstates
via the constant EIGENSTATES in solver.py. Note that the number of orderings to test for a symmetric
network is actually 3 as noted by [1], as opposite but equal paths have the same length; however, testing
all 6 states explicitly allows my implementation to handle asymmetric networks as well

5 Results and Discussion

I was able to successfully implement [1]’s algorithm on fully-connected networks of 4 nodes. Specifically,
my implementation used 6 estimator qubits just like [41]; T found that increasing this number during testing
by even 1 qubit greatly slowed down the calculation speed. Given that [1] only test their solution on one
toy example 4-node network, it is impossible to compare my implementation’s results with theirs. Instead,
I evaluated the performance of my algorithm on 4 randomly-generated sample graphs which might be more
representative of real-world TSP problems. The adjacency matrix of one such sample is below in Figure
2. The specifics for each test graph are hosted on my GitHub in the data folder.

0 0.6542 0.1557 1.0521
0.6542 0 1.5267 1.4883
0.1557 1.5267 0 0.3388
1.0521 1.4883 0.3388 0

Figure 2: The adjacency matrix for graph_0.txt, one of the test networks.

Although this is inherently the simplest case of TSP problems, the algorithm remains imperfect, likely
because of an insufficient number of estimator qubits. Even [1] note that their implementation’s expected
results differ from the actual sampled results. I applied the algorithm to each sample graph 5 times,
counting the number of instances where it selected the correct route (having the minimum eigenvalue
estimate). My results are below. Furthermore, running the algorithm using an additional estimator qubit
did indeed up performance, especially on test graph 1 on which the solver increased its accuracy by 40%.
This came at a substantial increase in compute time however.

6 Future Work

Substantial future work remains regarding quantum approaches to TSP, both with respect to this QPE
approach and other quantum optimization schemes. Some brief, non-comprehensive thoughts regarding
QPE specifically are below.

Performance of QPE approach to TSP on 4 sample graphs

correct solutions out of 5 trials

=0.5 0.0 0.5 1.0 15 2.0 2.5 3.0 35
Test graph index

Figure 3: Number of successful trials out of 5 for each randomly-generated sample graph.

6.1 Implementing with a noise model

At the start of the project, I had hoped to test the efficacy of my algorithm under a standard noise model
such as the one from pyQuil’s add_decoherence noise. However, add_decoherence noise only operates
on QUIL programs using the Rigetti QVM’s native gate set of RZ, RX, and CNOT. Despite attempts at re-
compiling my program into the native gate set (testing different device frameworks and timeout settings),
I was unable to do so due to timeouts by the quilc compiler. I suspect this was due to the complexity of
re-compiling my custom gates coupled with the low compute available to me. Consequently, there remains
an opportunity for future work to characterize the extent to which noise affects the QPE results.

6.2 Experimenting with more qubits

My computer struggled to run experiments on the qvm with even 16 qubits. Given that the effectiveness
of the QPE approach is bounded by the number of estimator qubits used, further work to characterize the
effects of more qubits would be very interesting.

7 Acknowledgements

Thank you to the CS269Q) instuctors and course staff for a wonderful course! The instructors are welcome
to post this paper and share the source code as they see fit.

References

[1] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm.
arXiw preprint arXiww:1411.4028, 2014.

[2] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G Rieffel, Davide Venturelli, and Rupak
Biswas. From the quantum approximate optimization algorithm to a quantum alternating operator
ansatz. Algorithms, 12(2):34, 2019.

[3] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

=

Karthik Srinivasan, Saipriya Satyajit, Bikash K Behera, and Prasanta K Panigrahi. Efficient quan-
tum algorithm for solving travelling salesman problem: An ibm quantum experience. arXiv preprint
arXiv:1805.10928, 2018.

[5] Gerhard J Woeginger. Exact algorithms for np-hard problems: A survey. In Combinatorial optimiza-
tioneureka, you shrink! pages 185—-207. Springer, 2003.

https://github.com/vikpattabi/QuantumTSP

	Introduction
	Algorithm
	Setting up the unitary operators
	Quantum Phase Estimation
	The Quantum Fourier Transform
	Benefits over QAOA

	Data
	Implementation Details
	Source Code
	Gate Implementations
	Inspecting Possible Eigenstates

	Results and Discussion
	Future Work
	Implementing with a noise model
	Experimenting with more qubits

	Acknowledgements

