
Quantum Secret Sharing

Franklin Jia, Marc Robert Wong, Ruchir Rastogi

June 8, 2019

1 Introduction

Consider a scenario in which Alice would like to share a secret with Bob and Charlie, such that neither
individually could reconstruct the secret nor gain any information about the secret but together they
could. This problem, referred to as the secret sharing problem, has been well studied in the classical
setting where the secret s is a string in {0, 1}n. If the secret must only be shared between two
individuals, there is a very simple algorithm that can be employed. Alice sends a random string
r ∈ {0, 1}n to Bob and s⊕ r to Charlie. Neither Bob nor Charlie can gain any information about s
individually, but if they XOR their strings together, they can recover the secret:

r ⊕ (s⊕ r) = s.

More complex schemes can be used to split a secret into n shares where at least k shares are required
to recover the secret. Shamir’s Secret Sharing algorithm1, for instance, encodes a one bit secret as a
degree k − 1 polynomial where each of the n shares is an evaluation of the polynomial. If at least k
shares are known, polynomial interpolation can then be used to recover the secret.

In this paper, we focus on an analogous problem in the quantum realm. In particular, we examine
a quantum secret sharing protocol described by Hillery et al.2, which we refer to as the HBB pro-
tocol, that splits one secret qubit into two. The protocol has the additional advantage that if an
eavesdropper tries to interfere (for example by entangling an ancilla qubit with the qubits used in
the protocol), the eavesdropper will either gain no information or the tampering will be detected by
the honest parties.

In the remainder of this paper, we will describe the HBB protocol and its implementation. Afterwards,
we will detail results of running the protocol on both a QVM with noise and the Rigetti QPU. Finally,
we will go over some possible next steps.

2 HBB protocol

Let’s consider the case where Alice wants to share a quantum secret A with Bob and Charlie.

(1) Alice generates a GHZ triple a, b, c such that only Alice has access to a, only Bob has access to
b, and only Charlie has access to c.

1Boneh, Shoup. “A Graduate Course in Applied Cryptography” (Chapter 11.6.1)
2Hillery et al. “Quantum Secret Sharing”. https://arxiv.org/pdf/quant-ph/9806063.pdf

https://arxiv.org/pdf/quant-ph/9806063.pdf

(2) Alice measures both A and a in the Bell basis. Let the resulting values be v1 and v2.

(3) Bob or Charlie are randomly chosen to measure their GHZ qubit (i.e. either a or b, respectively)
in the X basis. Let’s assume for the sake of clarity that Bob is chosen, and let the resulting
value be v3.

(4) Alice sends v1 and v2 to Charlie, and Bob sends v3 to Charlie.

(5) Finally, Charlie can transform his GHZ qubit c into A up to an overall sign by applying a set
of up to two Pauli gates, which depend on the values of v1, v2, and v3, to c. The mapping from
(v1, v2, v3) to the corresponding Pauli gates required to transform c into A up to an overall sign
are described in equation (19) of the HBB paper.

In practice, we implemented the HBB protocol using PyQuil. Our first implementation behaved
exactly as described above by using the MEASURE instruction and classical control flow to correctly
transform Charlie’s GHZ qubit c into Alice’s secret A. This implementation can be found in hbb.py.
While this implementation performed correctly on the QVM simulation, we were unable to run it
on the QPU due to some errors which we believe arose because we had PyQuil instructions in our
program after we used the MEASURE instruction. In order to resolve this situation, we decided to
mirror the approach of Joy et al.3, who used controlled gates with control qubits a, b, c to emulate the
measurement and classical control flow section of our original implementation. This quantum circuit
is visualized in Figure 2 of the Joy et al. paper, and we have included it below for convenience.

Figure 1: Quantum circuit (source: Joy et al. Figure 2)

Our PyQuil implementation can be found in hbb qcs.py. We also implemented a version of the
protocol that works with N -qubit secrets in hbb n.py.

3 Results and discussion

We first implemented the above protocol and ran it on the Aspen-4-4Q-A lattice of the Rigetti QPU.
The following are some of the relevant noise characteristics for that lattice: T1 = 27.07 µs, T2 =
21.43 µs, fRO (readout fidelity) = 94.02%.

Table 1 depicts the ability of Charlie to reconstruct the secret sent by Alice for a variety of secrets:

3Joy et al. “In principle demonstration of quantum secret sharing in the IBM quantum computer.” https://

arxiv.org/pdf/1807.03219.pdf

https://arxiv.org/pdf/1807.03219.pdf
https://arxiv.org/pdf/1807.03219.pdf

secret construction expected P (|0〉) P (|0〉) of constructed secret P (|0〉) of reconstructed secret
X 0.00 0.08 0.15
H 0.50 0.51 0.56

HTH 0.85 0.83 0.70

Table 1: Performance of HBB protocol on QPU (1000 trials)

Measuring the probability of landing in a |0〉 state helps us characterize how close the reconstructed
secret is to the intended secret. The above results show that the the QPU introduces a significant
amount of noise into the reconstructed secret, thereby preventing this protocol from being practical
in the short term for sharing quantum secrets. The protocol could be used to share classical secrets
(with the added benefit of detection of eavesdropping), but cryptographic schemes that encrypt clas-
sical shares would work much better.

Since the protocol did not successfully run on the QPU, we analyzed its performance on the QVM.
First, we compared the performance of the protocol on the QPU with its performance on a QVM
simulated to have the same T1, T2, and fRO values. The following graphs compare the noisy QVM
with the QPU:

The above graphs illustrate that the errors introduced by the QPU are not just due to decoherence
noise and readout errors, as the QVM is simulated with the exact same error values as those of
the QPU. This happens because decoherence noise and readout errors are not enough to model the
reality of noise on the QPU which can be much more complex.

We also measured the performance of the HBB protocol across a range of noisy QVM simulations
by varying the T1/T2 values. This would allow us to estimate what the performance of the protocol
would look like if we were able to run the HBB protocol on a less noisy QPU.

On the graphs below, note that the red line is the expected probability of measuring the 0 state. We
also made the assumption that T2 = T1/1.5 which is roughly consistent with the T1 and T2 values
for the QPUs available on Rigetti’s QCS. We also used a global readout fidelity of 0.95 which is once
again similar to the readout fidelity of Rigetti QPUs.

As expected, the below graphs clearly show that a QVM with less decoherence noise has a more
accurate secret reconstruction as the measured probability approaches the theoretical probability.
However, it seems that in order to reach the theoretical probability we would need QPUs that have
much higher T1/T2 values than are currently available. Note that in the first graph, although the
algorithm seems initially accurate because it has probability of 0 close to the expected 0.85, the
second graph shows that this is simply due to all measurements trending towards the 0 state with
very low T1 values. This seems reasonable based on the definition of T1 coherence. We can also
see that even with a noisy QVM—with T1/T2 values that are orders of magnitude higher than the
current QPUs—the performance is still not exactly what we expect. This gap is due to the readout
fidelity which remained 0.95 for all the noisy simulations; with a readout fidelity of 1.0 the noisy
simulations were able to reach the theoretical probabilities.

4 Next steps

4.1 State tomography

In order to obtain a more precise measurement of the performance of the HBB protocol on a QPU
and on noisy simulations, we tried to use state tomography. State tomography would allow us to
determine the fidelity, a metric which approximates the distance between the theoretical density
matrix we expect and the experimental density matrix we measured. In particular, we could calcu-
late the fidelity between Alice’s secret A and Charlie’s recovered value after transforming c. This
would give us a more precise measurement than simply comparing the probability of A and c being 0.

Unfortunately, we ran into several issues when trying to implement state tomography. The state
tomography library in Grove looked very promising but unfortunately to our knowledge has not
been updated to work with PyQuil 2. In order to resolve this issue, we attempted to update the
Grove library manually as well as looking into changing our implementation to work with PyQuil

1.9, which seemed non-trivial as there have been significant changes. Next, we tried to use the
Forest benchmarking library. This was also unsuccessful due to lack of documentation of the Forest
benchmarking library as well as the fact that the Forest library is much more low-level than the Grove
tomography library. Finally, we also attempted to write our own custom tomography function; this
also proved to be unsuccessful.

4.2 Multiparty HBB

An extension of the HBB protocol that we considered implementing was to allow for the secret to be
shared between more than 2 parties. The HBB paper describes a version of the secret sharing scheme
for sharing between 3 parties and another paper by Xiao et al.4 describes a more general extension
of HBB to share quantum information between N parties.

4.3 Threshold QSS schemes

The Cleve et al. paper5 describes another type of quantum secret sharing that is known as a threshold
secret sharing scheme. A (k, n) quantum secret sharing schemes splits quantum information into n
shares such that at least k of the n shares are required to recover the secret. Much like the classical
Shamir Secret Sharing scheme, the Cleve et al. paper describes a quantum secret sharing scheme
that relies on quantum polynomial codes to implement a (k, n) threshold scheme for n < 2k.

4.4 Communication efficient quantum secret sharing schemes

Typically in quantum secret sharing, we’re interested in minimal authorized sets for reconstruction of
the secret (where every proper subset of an authorized set is unable to recover the secret). However,
if we allow for non-minimal authorized sets, then we can trade off the size of the authorized sets with
the amount of communication required for reconstruction, reducing communication overheads by a
factor of O(k).6

5 Miscellaneous

Code repository
Our code is available on GitHub here: https://github.com/rastogiruchir/CS269Q-Final-Project.
We are comfortable with the code and paper being posted on the course website.

Late days
We pooled late days from Franklin (1 late day) and Marc (3 late days) in order to obtain a 1 day
extension. In addition, we requested and received an addition 1 day extension from Will because we
could not reserve QCS lattice instances which we needed to make some final measurements.

4Xiao et al. “Efficient multiparty quantum-secret-sharing schemes”. https://journals.aps.org/pra/pdf/10.

1103/PhysRevA.69.052307
5Cleve et al. “How to share a quantum secret.” https://arxiv.org/pdf/quant-ph/9901025.pdf
6Senthoor et al. “Communication Efficient Quantum Secret Sharing” https://arxiv.org/pdf/1801.09500.pdf

https://github.com/rastogiruchir/CS269Q-Final-Project
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.69.052307
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.69.052307
https://arxiv.org/pdf/quant-ph/9901025.pdf
https://arxiv.org/pdf/1801.09500.pdf

	Introduction
	HBB protocol
	Results and discussion
	Next steps
	State tomography
	Multiparty HBB
	Threshold QSS schemes
	Communication efficient quantum secret sharing schemes

	Miscellaneous

