Rational Quantum Secret Sharing

Manan Rai Jerry Zhilin Jiang
Department of Computer Science Department of Computer Science
Stanford University Stanford University
mananrai@stanford.edu zjiang23@stanford.edu

Andrew Tierno
Department of Computer Science
Stanford University
atierno@stanford.edu

1 Introduction

Secret sharing is a common cryptographic technique that involves partitioning information into parts
with the unique property that each of these pieces by itself cannot be used to recover the original
information. In this way, a secret holder may disseminate their data among a set of peers and know
that unless they collaborate, the secret will remain unknowable to all parties involved. More formally,
we define a (k,n)-threshold scheme as an encoding scheme under which a secret S (e.g. a bit
string) is converted into n shares, with which the original message S can only be recovered if &
parties collaborate, and any subset of (k — 1) shares does not reveal any information about the value
distribution of the secret S. Quantum Secret Sharing attempts to extend this scheme to work with
quantum secrets.

2 Background

There are several techniques by which we might extend this concept into the quantum domain. The
Quantum Secret Sharing (QSS) protocol as described by []. and further by

[] operates by having three people (or more generally n) share GHZ state entangled qubits,
and then measuring them in various bases according to the instructions of a secret keeper. More
modern protocols have since been proposed, and the one in particular we investigate is the Rational
Quantum Secret Sharing (RQSS) protocol proposed by []. The RQSS algorithm
proposes a slight tweak on the secret “game” where instead of “good” agents that always comply
with the protocol and “bad” agents that always try and break it, all participants are “rational” agents
in that they’d prefer to have the secret over not having the secret, but will not make any effort to pass
the secret along once they have obtained it, and would further prefer nobody getting the secret to
others getting the secret while they don’t.

With this in mind, the RQSS algorithm is designed as a game where the secret holder only transmits
the true secret with some probability p. The participants in the game must do work to decrypt the
transmitted bit-string, and share their results (on punishment of the secret sharing ending early), prior
to knowing whether the transmitted bit string was the true secret. In this way, the participants are
sufficiently motivated to cooperate with one another while preventing “cheaters” that wish to keep
the secret for themselves.

3 Methods

3.1 Entanglement

As a part of the RQSS scheme proposed by [], we utilize quantum entanglement to
create n-qubit entanglements. Given a qubit ¢ storing the secret state after Inverse Quantum Fourier
Transform (IQFT) and (n — 1) share qubits initialized to state |1), the entanglement algorithm applies
Controlled-NOT (CNOT) gates between ¢ and each of the share qubits, so that all n qubits affect the
state of one another when any one of them is measured or otherwise tampered with. After receiving
all qubits of a n-qubit entanglement, the receiving party Bob then disentangles the set of qubits by
applying the CNOT operation between ¢ and every share qubit again. This process is essential to
the algorithm by enabling every receiving party (Bob) to detect cheating of other peers and abort
accordingly.

3.2 Quantum Fourier Transform

Note that the Fourier transform is defined as

o0
e = / F@)e~2mintdy 0
— 00
and the generalized form of Discrete Fourier Transform, which is defined as follows
N-1
Fp= Y wpe ¥ En)
n=0
maps a sequence of complex numbers xg, ..., xy_1 to another sequence X, ..., Ty_1. Similarly,

the Quantum Fourier Transform is defined as

ST asli) = > an k) 3)
j k

where
N-1
~ 1 2mi
ap=—= Y apen*")
VN =
n=0
Then, given the N'™ root of unity, w = 2%*, we can define the kn™ element of the transform as w"".
We can express this as a linear transform as
(W0 WO w? . w?
w0 wl w? - wV—1
- 0 2 4 2(N-1)
FN — |w w w . w (5)
_wO WwN-1 2(N=-1) W(Nfl)z

and conversely, the Inverse Fourier Transform is defined as

X w? w? . w?
w? wt w? s wVED)

- 0 -2 —4 —2(N-1)

}:, _ |w w w eew (6)
_wo w-(N=1),—2(N-1) w—(N—l)"’

In our implementation, we define N-qubit PyQuil gates QF T and IQFT (representing the linear
transforms as defined in Eqn. 5 and 6).

4 Protocol

The n-out-of-n RQSS protocol for the case of 1 secret sharer (“Alice”) and n secret receivers (“Bob;”,
..., “Bob,,”) can be broadly divided into the following steps:

* Alice decides with probability v whether to reveal the true secret or to prepare a fake, testing
secret

* Alice takes her d-dimensional (d=2 in our implementation, because we are operating on
qubits instead of qutrits or other bases) secret ¢, which may be the one she intends to share
or simply a fake, and conducts Inverse Quantum Fourier Transform (IQFT) on the secret to
get ¢’

* Alice concatenates ¢’ and n — 1 signal bits, each initialized to the pure state |d — 1) (in our
case, |1))

* Alice entangles all bits above to get the n-particle entangled state ® using CNOT gates

* Alice conducts QFT on this state to get @’

* Alice creates n copies of ®’

¢ Alice sequentially transmits one bit from every ®’ to a Bob

 The Bobs will then trade qubits with one another until they have a full set of particles &’
that are entangled with one another and conducts IQFT on @' to get ®

 Each Bob disentangles the state ® using CNOT operations to get ¢’ and the signal bits
 Each Bob conducts IQFT on ¢’ to get the original secret ¢

* Every Bob measures the signal bits, if they haven’t received all the signal bits or if they do
not all resolve to the state |d — 1), they report the presence of cheating

* If cheating has been reported, the protocol terminates. Otherwise, Alice reveals if the Bobs
now possess the true secret thus ending the protocol, or if it was fake and that now they must
begin the protocol again

5 Experiments and Results

5.1 Overview

Our PyQuil implementation source code is publicly available at: https://github.com/
z71ang23/CS2690-RQSS. Both the Quantum Virtual Machine (QVM) and the Quil Com-
piler (QuilC) need to be running in the background (gvm -S and quilc -S, respectively) before
executing the tests.

Since we implement the protocol modularly, we test that the entanglement and Fourier Transform
procedures work as expected. In order to test the entire protocol, we run several experiments with 1
Alice and variable numbers of Bobs. We conduct experiments in the following situations:

» Pure Case: 1 Alice, n Bobs. Alice shares correct secret and all Bobs properly share their
qubits with one another.

* Alice Sends Out Garbage: 1 Alice, n Bobs. Alice shares a garbage secret in order to test
that the Bobs act rationally.

* Bob Refrains: 1 Alice, n Bobs, m < n Bobs refrain. Alice shares a [pure/garbage] secret,
but m Bobs do not share their secret.

* Bob Cheats: 1 Alice, n Bobs, m < n Bobs cheat. Alice shares a [pure/garbage] secret, but
m Bobs cheat by altering their qubits before sharing them with the others.

In the first two situations, we expect the protocol to succeed. In the latter two, the protocol breaks
because the Bobs fail to act per expectations. With the aforementioned tests, we also calculate
statistics of how the protocol fares in the event of cheating, including True Positives (protocol fails
in the event of cheating), False Positives (protocol fails with no cheating), True Negatives (protocol
succeeds with no cheating), and False Negatives (protocol succeeds in the event of cheating))

5.2 Pure Case

In the “pure case”, Alice always uses the actual secret (setting v = 1 using argument -p 1), and no
Bob ever cheats. We see that in the pure case, all Bobs end up with n qubits. Note that the first qubit
corresponds to the secret, and the remaining n — 1 qubits are used by Alice to verify the veracity of
the Bobs’ motivations.

https://github.com/zjiang23/CS269Q-RQSS
https://github.com/zjiang23/CS269Q-RQSS

$ python tests.py -v —p 1

Running test with 1 Alice and 3 Bobs, and no cheating Bobs:
If no Bobs are cheating, all single particles should be 1.
Bob 1 received single particles: 1, 1

Bob 2 received single particles: 1, 1
Bob 3 received single particles: 1, 1
SECRET REVEALED [(0.7071067812+07) |0> + (-0.7071067812+07) |1>]

We observe that the protocol succeeds in this case, as expected.

5.3 Alice Sends Out Garbage

When Alice sends out a garbage secret, and no Bob ever cheats, the protocol will run till the end
where the Bobs successfully retrieve a shared secret value, only to receive announcement from Alice
that the secret is in fact garbage, and the protocol would restart again from the beginning.

When Alice always sends out garbage (setting v = 0 using argument —p 0), the protocol always
runs through and starts over repeatedly:

$ python tests.py -v -p 0

Running test with 1 Alice and 3 Bobs, and no cheating Bobs:
If no Bobs are cheating, all single particles should be 1.
Bob 1 received single particles: 1, 1

Bob 2 received single particles: 1, 1

Bob 3 received single particles: 1, 1

FAKE SECRET REVEALED, RETRYING...

If no Bobs are cheating, all single particles should be 1.
Bob 1 received single particles: 1, 1

Bob 2 received single particles: 1, 1

Bob 3 received single particles: 1, 1

FAKE SECRET REVEALED, RETRYING...

5.4 Bob Refrains

If any of the Bobs refuses to send out its shares, then at least one Bob will not receive its complete set
of shares for secret retrieval. In our experiments, each Bob is directly given a collection of qubits it
“receives,” so Bob will abort if the collection of qubits does not include a complete set of shares. In
practice, this will lead to the Bob reaching a time-out and aborting the process.

5.5 Bob Cheats

As mentioned by [], even if a Bob received a tampered qubit from its peer, there is an
upper bound é probability that the Bob fails to detect the tampering due to the nature of the algorithm.
In our case, since d = 2, the probability of getting a false positive (i.e. accepting a tampered share)
should therefore be é = 1. As the number of rounds played before Alice reveals the true secret can
be modeled as X ~ Geo(zy), we see that the overall probability of a cheater not being discovered is
bounded above as

=3 (;)imx _)=Y (;)iw gyt ™

O S
_d<11;‘*>_7+(d—1) ®

~ | True Positives | False Positives | True Negatives | False Negatives
04 20 28 72 0
1 20 40 60 0

Table 1: Results for multiple runs with different values

With v = 0.4 and d = 2, we should observe p = %

positives. With v = 1 and d = 2, we should observe p = ﬁ ~ 0.50 of cheating cases being
false positives.

~ 0.29 of cheating cases being false

We run our tests with argument —a (equivalently ——run_al1l), which sequentially runs a series of
different test scenarios.

Example where cheating is detected:

Running test with 1 Alice and 3 Bobs, such that Bob 3 cheats
with a consistent program:

If no Bobs are cheating, all single particles should be 1.
Bob 1 received single particles: 1, 1
Bob 2 received single particles: 0, O
Bob 3 received single particles: 1, 1
CHEATING DETECTED

Example where cheating is not detected:

Running test with 1 Alice and 2 Bobs, such that Bob 2 cheats
with a random program:

If no Bobs are cheating, all single particles should be 1.
Bob 1 received single particles: 1

Bob 2 received single particles: 1
SECRET REVEALED [(0.7071067812+07) |0> + (-0.7071067812+07) |1>]
Across multiple runs of all test cases, with v = 0.4, we observe approximately a 2 : 5 false positive
versus true negative ratio, and 0.28 of cheating cases are not caught by the protocol. With v = 1, we
observe approximately a 2 : 3 false positive versus true negative ratio, and 0.40 of cheating cases
are not caught by the protocol. Furthermore, we observe no cases of false negatives at all. These
results are summarized in Table 1. Note that these empirical results are consistent with our theoretical
hypotheses above.

6 Future Work

We intend to extend this protocol further by developing a noise tolerant version of the procedure.
While the protocol works successfully on a simulated quantum computer, it would not fare as well
on an actual quantum processor. In particular, the state of the secret and single particles can get
corrupted during transmission. Under the standard algorithm, this would prompt the Bobs to declare
each other as cheating, thus disrupting the protocol. We envision a few solutions to this problem. For
one, we could employ an error correcting scheme such as Shor’s code to help correct any corruptions
(though given current quantum hardware limitations this solution does not scale well). We could
further use a majority vote among the Bob’s to decide which, if any, Bob is lying.

7 Conclusion

We have successfully implemented the logic of the Rational Quantum Secret Sharing (RQSS)
algorithm, and various test scenarios to prove the correctness of our implementation. This shows the
feasibility of the algorithm on a simulated level. With future development of quantum computing
hardware, it looks promising that the RQSS algorithm can be tested on actual quantum computers
and put into practical applications in the future.

References

Richard Cleve, Daniel Gottesman, and Hoi-Kwong Lo. How to share a quantum secret. Physical
Review Letters, 83(3):648, 1999. 1

Mark Hillery, Vladimir BuZek, and André Berthiaume. Quantum secret sharing. Physical Review A,
59(3):1829, 1999. 1

Huawang Qin, Wallace KS Tang, and Raylin Tso. Rational quantum secret sharing. Scientific reports,
8(1):11115,2018. 1, 2,4

