Comparing and Implementing Different Quantum Secret Sharing Schemes

Yousef Hindy, Pieter-Jan Stas
(Dated: June 8, 2019)

In this project, we investigate the idea of quantum secret sharing, in which a secret (usually a
quantum state) is encoded into multiple qubits or “shares” which are then distributed to relevant
parties. We implement a (3,5) scheme that has been around in literature for quite some time in
pyQuil. We also contribute our own scheme that allows for any n and is a (n,n) scheme and
implement it in pyQuil as well. Finally, we investigate the effects of noisy qubits on the fidelity of

these designs.

INTRODUCTION

Recent advances in quantum information technology
have nearly made quantum-secure communications pos-
sible. In a post-quantum world where classical encryp-
tion and communication systems are made vulnerable,
there is a considerable need for systems that are robust
and reliable for sharing information.

Consider the following problem: you are the owner of
a bank vault, and you have eleven employees. You want
to give your employees access to the vault, but you do
not want to allow one or two or even three employees to
conspire and unlock the vault together. In fact, you want
to create a system of keys and locks such that you would
need a majority of the employees (six) to come together
to unlock the vault. Once you have created this, you have
essentially created a (6,11) threshold scheme.

More generally, a (k,n) threshold scheme is one in
which a secret is encoded into exactly n shares that are
distributed. With at least k£ shares, you can perfectly
reconstruct the secret. With k — 1 or fewer shares, how-
ever, you gain no information at all about the secret and
are out of luck. The idea was first introduced by Adi
Shamir in 1979 [I], where the shares were classical bits
of information.

The idea can be extended into the quantum regime too,
as shown by Cleve et. al in 1999 [2]. Instead of distribut-
ing n shares of classical information, we can disseminate
n shares of quantum information in the form of qubits.
In general, we take a quantum state |¢)) which lies in a
Hilbert space H of dimension d and encode it into a new
state |phi) or p (depending on whether you are using a
pure state scheme or a mixed state scheme) which lies
in a Hilbert space H’ with dimension d". Given k out
of n parts of the encoded state, you should be able to
reproduce the original state |¢). In [2], they show that
due to the no-cloning theorem, n < 2k.

There is a deep connection between quantum secret
sharing (QSS) schemes and quantum error correction
(QEC) codes. In fact, every QSS is a QEC, but the rela-
tion does not necessarily hold the other way. QSS codes
correct for k — 1 erasure errors, and could be useful if im-
plemented towards fault-tolerant quantum computation.
The difference is that in a general QEC code, one can

usually recover some information about the state from
k — 1 shares, whereas in QSS codes, no information can
be recovered.

In this paper, we present the implementation of two
QSS schemes. The first is a (3,5) qubit sharing scheme
that is mentioned in [2] but is actually described in [3]
and [4]. We encountered several errors in the derivation
and description in [4] and correct for them. The second
scheme we present is an original one that we created that
essentially encodes information in the parity of the prod-
uct state of the qubits. It works in general as an (n,n)
secret sharing scheme. We present examples and code
that demonstrate our system in action.

WHAT WE IMPLEMENTED

We investigated three separate schemes, but were only
able to implement two, as one would require more qubits
than we can simulate (or run on the cloud at the moment)
to do anything interesting. We present the schemes and
the results of the simulations below. All test were run on
the Rigetti Quantum Virtual Machine (QVM).

Scheme 1: (k=3,n=75)

The first scheme was mentioned in the original Cleve
et. al paper [2], but originally produced as an error cor-
recting scheme in Luhe et. al []. It encodes a secret
state |¢)) = «|0) + |1) into a five qubit product state.
With any three of the qubits, one can recover the orig-
inal qubit’s state. The scheme is shown in Figure [I]
To decode from any of the three qubits, one must ap-
ply a Hadamard gate to one of the qubits and then do
a Bell-state measurement, on the rest. The outcome of
the Bell-State measurement gives instructions for which
Pauli transformation to apply to the first qubit to recover
the original state. The approprimate transformations are
given in Table [}

To test our scheme, we encoded a qubit in the |1) state
and ran it through the scheme. At the end, we measured
the target qubit and found how many times it was in the
|1) state. In this case, we found that the qubit was in the
|1) state 100% of the time, indicating that the scheme

5-bit encoder

la> ® .
[b> ®
Q> 11
> | R
|d> X

FIG. 1: (3,5) encoding scheme. The x’s represent
controlled nots, and the 7’s in circles represent
multiplying by —1. Closed circles mean that the control
is turned on when the qubit is in the state |1) and open
circles mean that the control is turned on when the
qubit is in state |0) . Courtesy of [4]

Qubit A|Qubit B|Transformation on Qubit C
0 0 1
0 1 X
1 0 Z
1 1 X7Z

TABLE I: Transformations Required After Bell-State
Measurement For (3,5) Scheme

was able to recover the original qubit. We ran the same
experiment for the |0) state, and achieved the same re-
sults. We extended this to an equal super position state:
[) = %(|O) + |1)), and found that when we measured
the state, it was in the |0) state 49% of the time. Future
work would include doing full state tomography on the
final qubit to get the actual values of o and §.

The code for the implementation of this method
can be found in the repository we included in the
quantum_secrets.ipynb notebook. To change the
original state that is encoded, one can adjust the pro-
gram in the prepare_state (qubit) method.

Scheme 2: (k =n,n)

An interesting scheme we came up with is a (k = n,n)
which functions for any value of m. The principle is
quite simple: we encode the qubit we want to transmit
|Q) = «|0) + B|1) into a new logical basis «|0)r, + 5|1),
of size 2™ using the method described in Fig. [2| |0}, cor-
responds to an equal superposition of all states contain
an even number of |1) states, whereas |1); corresponds
to an equal superposition of all states containing an odd
number of |1) states. The encoded states are shown in
equation (1) for n =2, n = 3, and n = 4 below (ignoring

IHHZI
| 0) H|—|Z

[0y —=4

| O} hd HHZ I
| 0y

N * v

D

FIG. 2: (k = n,n) encoding scheme. The solid dots
correspond to the control qubit of a controlled gate, the
clear circles with cross are NOT-gates, the H’s are
Hadamard gates and the Z’s are Pauli-Z gates. Note
that |@) is the original qubit we want to encode,

alo) + A1)

« ll)[, + 1\ l)p

| 0) b—b—b b al0)+4]1)

FIG. 3: (k = n,n) deccoding scheme

normalization):
n=2:|0); =]00) + |11)
1), = [01) + [10)
n =3:|0)r = [000) + [011) + [101) + |110)
[1);, =]001) + |010) + [100) + |111)
n =4:1]0)r = |0000) + |0011) + |0101) + |0110)

) +]1001) + [1100) + [1111)
|1) 7, = [0001) + [0010) + |0100) + [1000)
+(0111) + [1011) + [1101) + [1110)

Taking n = 3 as an example, we can see that if ev-
ery qubit gets distributed to a different player (say Al-
ice, Bob, and Charlie), each player individually has a
qubit «(|0) + |1)) + S(]0) + |1)). This gives no infor-
mation at all about the secret. Even if two players
put their respective qubits together (whether it be Alice
and Bob, Alice and Charlie, or Bob and Charlie), they
get an equal superposition of all possible 2-qubit states:
(]00) +|01) + |10} + [11)) + B(|00) + [01) + [10) +|11)),
which still discloses no information about the original
qubit |@Q). Only when all three players put their qubits
together can they recover the original qubit.

If one has access to all qubits, it is possible to recover
the secret by measuring the parity of the state. There
are undoubtedly several ways of doing this, but we have
found a simple way to be the method described in Fig.
Bl

Similarly to the (k = 3,n = 5) scheme, we ran several

tests on the algorithm and found it to be reliable and
functioning as expected. The code for the implementa-
tion of the (k = n,n) method can be found in the repos-
itory we included in the NN_sharing_scheme.ipynb
notebook.

Polynomial Codes

We also experimented with a class of codes that en-
code the original state into a polynomial combination of
states. This code, based on CSS codes, was the basis
of many of the proofs about these codes in the original
Cleve et. al [2] paper. The basic idea is that the secret is
encoded in the coefficients of a polynomial that is eval-
uated at n different points. Given the superposition of
the polynomial over different coefficient values, one can
recover the original state from k shares.

We were hoping to use this scheme to implement a gen-
eral (k,n) code, but we found that in order to implement
it, we would need at least 3 physical qubits to represent
each “qubit” in the superposition, as we would be work-
ing in Zg at a minimum. This means to implement an
n = 6 scheme, we would need to have at least 18 logical
qubits plus any additional ancillae used for intermediate
computation. Once quantum computers are able to han-
dle more qubits, we would be able to implement a scheme
that would go beyond the schemes implemented above.

EFFECTS OF NOISE ON SCHEME 2: (k=n,n)

Interestingly, the (n.n) QSS behaves quite badly in a
noisy environment, as seen in Fig. [4] Here we added a bit
flip probability of 0.1 for every single encoded qubit. This
makes sense, as all qubits are needed for the decoding to
get the original qubit state. If even one qubit experiences
a bit flip, that is already enough to give a completely
wrong result. Thus, the higher the number of encoded
qubits is, the higher the chance for error. This error could
of course be greatly improved if we used a quantum error
correcting code for every shared qubit (but would greatly
increase the number of required qubits).

FUTURE WORK

We originally wanted to implement a (k,n) scheme for
any arbitrary k and n that obey the rule n < 2k — 1
given by [2]. Upon learning more about different quan-
tum sharing schemes, this turned out to be way too am-
bitious, not to mention that such a scheme might ren-
der any other QSS obsolete. We did however come up
with the less flexible (n,n) QSS, which is a first step in
the right direction. One interesting future direction we
might want to take would be trying to find, for example,

0.45 4

0.40 +

0.354

0.30 4

error

0.25 4

0.20 4

0.154

0.10 4

FIG. 4: Error of (k =n,n) Quantum Secret Sharing
scheme as n increases. Note that at error = 0.5, the
state is completely depolarized and all information is
lost.

a method (n—1,n) or (n—2,n) that works for any value
of n.

Something we would want to try out in the future is,
of course, to run our code on a real quantum computer.
For this project we have only used the QVM provided by
Rigetti, but the real deal is to test it out on an actual QC.
This would also give us a better idea of how our quantum
secret sharing schemes behave in real noisy environments,
as opposed to the simulated noise we have used to test
our code on the QVM.

Particularly for the (n.n) QSS, it would be interesting
to implement a Qauntum Error Correcting Code, as we
have seen that introducing a noisy environment greatly
diminishes its accuracy. Unfortunately, this would also
significantly increase the required qubits for the On a
real quantum computer, the currently limited number
of accessible qubits would also make testing the limit of
n difficult. As quantum chips increase their number of
qubits in the future, this would be something interesting
to test.

In addition, we had hoped to run noise experiments
on the (3,5) scheme that we implemented, but since
we used gate modifiers to create the triple controlled
m rotations, we were not able to use the noisy QVM,
as we got the error QVMError: The noisy QVM
doesn’t support gate modifiers. Hopefully, in
future iterations of pyquil, this will be fixed so we can
examine the effects of noise on the Cleve scheme.

ACKNOWLEDGEMENTS

We would like to thank Professor Boneh and Dr. Zeng
for their advice in the early steps of our project. We
would also like to thank the entire teaching team of CS
269Q for their help and support throughout the quarter.

[1] A. Shamir, “How to share a secret,” Commun. ACM,
vol. 22, pp. 612-613, Nov. 1979.

[2] R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a
quantum secret,” Physical Review Letters, vol. 83, no. 3,
p. 648, 1999.

[3] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek,
“Perfect quantum error correction code,” 1996.

[4] H. Lu, Z. Zhang, L.-K. Chen, Z.-D. Li, C. Liu, L. Li, N.-L.
Liu, X. Ma, Y.-A. Chen, and J.-W. Pan, “Secret sharing
of a quantum state,” 2016.

	Comparing and Implementing Different Quantum Secret Sharing Schemes
	Abstract
	Introduction
	What We Implemented
	Scheme 1: (k=3,n=5)
	Scheme 2: (k=n, n)
	Polynomial Codes

	Effects of Noise on Scheme 2: (k=n, n)
	Future Work
	Acknowledgements
	References

