A QAOA solution to the traveling salesman problem using pyQual

Matthew Radzihovsky, Joey Murphy, Mason Swofford

May 2019

1 Problem statement

The traveling salesman problem (TSP) is a famous
NP-complete optimization task. In the TSP we are
presented a graph of cities with weighted edges that
represent the distance between the cities. We are
then asked to find the shortest path in the graph
that visits all of the cities exactly once. TSP is a
classic combinatorial-optimization problem which, in
the worst case, must enumerate every possible path
and check its value. However, there are many clas-
sical heuristics which can do much better than this
O(n!) runtime. Classical algorithms which rely on
solving relaxed problems and then polishing for fea-
sible solutions, such as the branch-and-bound algo-
rithm, often achieve far superior performance from
the expected runtime of the naive approach [1]. How-
ever, in the worst case, these are still O(n!). Given
how closely TSP relates to other combininatorial-
optimization problems and its NP-completeness, any
method which improves upon the factorial run time
would revolutionize the world.

Recently, quantum algorithms have offered novel
solutions to this canonical problem. Examples in-
clude solutions via phase estimation [2] and a Quan-
tum Approximate Optimization Algorithm (QAOA)
[3]. Expanding on our Project 2 problem, we im-
plement a QAOA [1] solution in pyQuil [5]. To do
so, we defined a Hamiltonian that enforces the con-
straints of the problem; namely a Hamiltonian that
penalizes paths that visit cities more than once, paths
that go between cities without edges, and paths that
are long. Therefore, by finding the ground state of
our Hamiltonian, we can efficiently find a solution to
this NP-hard problem.

We build on this solution by implementing so-
called mixer operators, as described in [3]. TSP is
an optimization problem where we are interested in
determining a solution within a specified subspace.
Within this subspace there are hard constraints that
must always hold, such as the cities must have a path

connecting them. In addition, there are soft con-
straints, which refer to constraints we want to op-
timize over, such as the total path length. Therefore,
as Hadfield et al. describe, it is possible to refocus
on the unitary operators rather than Hamiltonians
to more efficiently implement mixers.

For all our methods, we formulate the problem as
finding the bitstring which corresponds to the optimal
sequence of cities. Using n? binary variables, where n
is the number of cities, if we divide the bitstring into n
continuous sections of n variables, each section should
have exactly one variable with value 1 and the rest
should be 0. The variable that is 1 corresponds, ac-
cording to its index within its section, to the city that
we have chosen to visit during that section, which
maps directly to a timestep. To be precise, if our bit-
string is @, then 2,45 = 1 with 0 <4, j,<n—1, cor-
responds to visiting the jth city in the ith timestep.

2 Methods

QAOA uses a few general steps: 1. Prepare the ini-
tial state, 2. Apply the cost Hamiltonian, 3. Apply
the driver Hamiltonian, 4. Exponentiate and param-
eterize the resulting product in p steps by p «4’s and
p B’s, and 5. Use classical algorithms to optimize
over 8 and . It is important at each minimization
step to store the best bitstring sampled so far in or-
der to have the best path in the end. Within the
general algorithm for QAOA, there are several design
choices to be made, such as the specific choices of cost
and driver Hamiltonians as well as the v and [val-
ues. Additionally, since we are dealing with both soft
and hard constraints, we must develop a weighting
scheme. Each of these choices may also introduce hy-
perparameters to the problem for which values might
be tuned by hand or included in the classical opti-
mization step.

2.1 Standard QAOA

The first theoretical task of this project is to select
our driver and cost Hamiltonians. For our driver
Hamiltonian, we choose a simple expression that has
a known ground state, namely:

7‘[[) :ZXI

i€G

(1)

which has ground state:

0y
|HD> - 2|G\

>

2€{0,1}IGI

[2) (2)

For our cost Hamiltonian, building off Project 2,
we have four terms that each penalize a constraint
of the TSP problem. Such a Hamiltonian makes use
of binary constraints to increase the costs for paths
which violate the constraints.

1. Each city should be visited exactly once, which
corresponds to the Hamiltonian term:

Hi=Y (1- way)’ (3)
a=0 3=0

where n is the number of cities to visit and 2, ; €
{0,1} is a binary variable indicating that we visit
city a along some path x at time step j.

2. Each timestep should only contain one city
(i.e. we can’t be in multiple cities at once),
corresponding to the term:

n—1 n—1
Ho =3 (1= 2ay)’ (4)
j=0 a=0

where the variables are defined identically to
above, however, now we sum over timesteps j
at the end.

3. An edge from one city to another should only
be taken if the two cities are connected, corre-
sponding to the term:

LYY %

=0 a={wa ;=1} B={wp j41=1}

51{E<a,6)€6‘})
(5)

where £ € R is a tunable hyperparameter scaling
the penalty factor and

1 if edge does not exist

1o =
{E(,8)¢G} {0 if edge exists.

4. Each city should be visited exactly once, which
is given by the Hamiltonian term:
n—2

=3 (X 2
=0 a={xq,;=1} B={ap j+1=1}
where A, g represents the distance traveled from
«a to B if the edge exists. If the edge between «
and B does not exist, then we use the largest dis-
tance in the graph to penalize the path. Mathe-
matically we define it as:

W(a,B),

if edge exists

Najg) (6)

max(W (I, m)),

VE(I,m) € G if edge does not exists

where W is the distance matrix.

We construct our cost and driver Hamiltonians in
pyQuil by representing them as sums of Pauli ma-
trices. This allows us to efficiently implement the
time-evolution by using the pyquil.paulis module.

2.2 QAOA using Mixers

Additionally, we implement TSP QAOA using mix-
ers as discussed in [3] and adapted from code orig-
nally written by Michal Stechly!. As described in
Hadfield et al., using partial mixers which explore
paths within the hard constraints, we can create a
new driver Hamiltonian based on these mixers. There
are value-selective ordering swap mixing Hamiltoni-
ans, which swap cities visited at time ¢ and j in a
path if they are specific cities denoted u and v, and
value-independent order swap mixing Hamiltonians,
which swap cities regardless of cities visited at i and
j. Mathematically, we can represent value-selective
ordering swap mixing Hamiltonian for cities {u, v} at
time {4, 7} as:

Hiigtguoy = (7)

>) (8)

1:{i,5}}={u,v}
(i, Ll (9)
We can also represent the value-independent order

swap mixing Hamiltonians by summing over the (g)
value-selective swaps as:

. 7li—17v7

‘(7:17.. ...,lj_l,u,...

7[,‘,1,U,...7lj,1,u7...

1Find his original Github repository here.

https://github.com/mstechly/grove/tree/master/grove/pyqaoa

Z ﬁ{i»j}’{u,v}

{u,v}e(g)

When encoding such a mixer, they simplify into a
combination of Pauli Gates implemented as follows

[3]:

" (enc)

_ ot gt ¢— - - - ot g+
H{i,j},{u,v} - Su,iS'u,jSuJSv,i + Su,iSv,jSu,jS'u,i
(11)
where
St =X+iY =11) (0| (12)
S =X — ¥ =[0) (1 (13)

Therefore, we can define our parameterized driver
. . .- " (enc)
unitary using our definition for H{Z.J}’{u’v} above as
follows:
= e BH{ 5} {u,0

uD:{i,j},{u,v}(ﬁ) (14)

This parameterized driver Hamiltonian differs from
the standard case, because instead of choosing a
Hamiltonian with a known ground state, we use mix-
ers to allow our driver to explore solutions within the
hard constraints of TSP. We explore the performance
of both of these implementations more in the follow-
ing section.

3 Results

In order to test our quantum algorithms, we built a
pipeline that generates random connected weighted
graphs, with varying average node degrees, and then
solve these graphs using a brute force classical algo-
rithm. We can now guarantee we have found the opti-
mal path, and can therefore sanity check our quantum
implementations against it. While this will be infeasi-
ble for large graphs, because the quantum alogrithms
are run on simulators, they are much slower and the
classical algorithm is not currently a bottleneck.

As for our quantum algorithms, our mixer imple-
mentation is successful at solving the TSP and repro-
duces, up to cyclic permutations, the solution found
by our classical solver. In testing our mixer imple-
mentation, we find that with 500 samples of the out-
put, with Trotterization expansion order set to 2,
and a graph containing 3 cities, the execution time
is about 10 seconds. Reducing the Trotterization ex-
pansion to first order, the program still returns the
correct solution and executes in about 5 seconds. We
find that when increasing the number of cities to
greater than or equal to four, the execution time is

prohibitively long (~ 10 minutes) if the Trotteriza-
tion expansion is not held to a first order approx-
imation. With 500 output samples, Trotterization
expansion order equal to 1, and 4 cities in the graph,
the mixer implementation finds the solution in about
5 minutes. These tests were conducted using a full-
connected graph.

Our TSP QAOA implementation using cost Hamil-
tonians is successful at finding the classical solution
for graphs with cities up to 4, but requires at least
about 1000 circuit output samples for consistent re-
sults. The cost Hamiltonian solution is slightly faster
than the mixer implementation, requiring only about
10 seconds on a 2015 Macbook Pro to solve the TSP
for 3 cities with 1000 samples and default Trotteri-
zation expansion order of 2. For graphs larger than
4, the cost Hamiltonian implementation’s execution
time is prohibitively long.

4 Discussion

Between the two implementations, properties such as
the number of gates required may contribute to differ-
ences in execution time for graphs of the same size.
Namely, the number of gates in our cost Hamilto-
nian solution scales as n?, where n is the number of
cities in the graph. On the other hand, each of the
two terms in Equation 11 can be implemented as a
sum of 8 terms, with each term being the product
of four Pauli matrices [3]. The mixer in Equation 14
can then be implemented using (n —1)(5) of these 4-
qubit gates, implementable then in a depth 2k < 2n
gates, where kK = n for even n and xk = n — 1 for odd
n. [3] §5.1.2 contains a more detailed discussion of
the gate requirements for the mixer implementation.
In short, the mixer approach requires less gates than
the cost Hamiltonian implementation. However, as
noted in §3, from our testing we find the cost Hamil-
tonian solver is generally faster than the mixer. This
may be due to various other confounding factors, such
as calls to external libraries in the mixer implementa-
tion, or a larger number of parameters in the classical
optimization step.

Both implementations require n? qubits. In future
work, we hope to explore solutions to the TSP that
use qubits wisely, beating the n? requirement.

5 Conclusion and Future Work

We have investigated and implemented two methods
of QAOA for TSP. It is exciting that we are able
to solve an NP-hard problem such as TSP by using
quantum algorithm and classical minimization. We
hope to continue exploring better implementations of
the TSP and quantum algorithms for other NP-hard
problems. This implementation provides a glimpse
into what problems quantum computers can solve
and the possibility of utilizing quantum supremacy.

In theory, quantum algorithms have been proven
to surpass classical algorithms. However, in imple-
menting our QAOA algorithm for TSP, we find there
is always the challenge of taking measurements to
get information from a quantum system that must
be done with smart choices in order to maintain an
advantage. This does not even take into account the
increased errors currently with quantum bits, that
can lead to incorrect solutions or an increased need
for error correction. These challenges lead to many
exciting possibilities for quantum algorithms to be
developed even before we have reliable many qubit
quantum computers.

Due to the prohibitive time constraint of running
larger quantum systems using a simulator, we were
not able to experiment with how our quantum algo-
rithms compared against classical algorithms on real
world scale problems. However, this would be an ex-
citing area of future research, especially as quantum
hardware continues to improve and this becomes fea-
sible.

6 Code

Our code and installation instructions are pub-
licly available at https://github.com/murphy;jm/
cs269q_radzihovsky_murphy_swofford.

References

[1] T. Volgenant and R. Jonker, “A branch and
bound algorithm for the symmetric traveling
salesman problem based on the 1-tree relaxation,”
European Journal of Operational Research, vol. 9,
no. 1, pp. 83 — 89, 1982.

[2] K. Srinivasan, S. Satyajit, B. K. Behera,
and P. K. Panigrahi, “Efficient quantum algo-
rithm for solving travelling salesman problem:

An IBM quantum experience,” arXiv e-prints,
p. arXiv:1805.10928, May 2018.

S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel,
D. Venturelli, and R. Biswas, “From the Quan-
tum Approximate Optimization Algorithm to a
Quantum Alternating Operator Ansatz,” arXiv
e-prints, p. arXiv:1709.03489, Sep 2017.

E. Farhi, J. Goldstone, and S. Gutmann,
“A Quantum Approximate Optimization Algo-
rithm,” arXiv e-prints, p. arXiv:1411.4028, Nov
2014.

R. S. Smith, M. J. Curtis, and W. J. Zeng, “A
practical quantum instruction set architecture,”

2016.

https://github.com/murphyjm/cs269q_radzihovsky_murphy_swofford
https://github.com/murphyjm/cs269q_radzihovsky_murphy_swofford
https://github.com/murphyjm/cs269q_radzihovsky_murphy_swofford
https://github.com/murphyjm/cs269q_radzihovsky_murphy_swofford

	Problem statement
	Methods
	Standard QAOA
	QAOA using Mixers

	Results
	Discussion
	Conclusion and Future Work
	Code

