Implementation and analysis of stabilizer codes in pyQuil

Shubham Chandak, Jay Mardia and Meltem Tolunay

Abstract

Stabilizer codes form a large family of quantum error correcting codes that includes well-known codes such as
Shor code, Steane code, CSS codes and toric codes. In this work, we build a framework for encoding and decoding
of general stabilizer codes on pyQuil and test specific single qubit codes with standard quantum noise models. This
project is part of CS269Q Spring 2018-19 course project at Stanford.

The code is available at https://github.com/shubhamchandak94/stabilizer_code/.

1 Introduction

Quantum fault tolerance and error correction are techniques that will need to be used to harness the computational
promise of quantum computers. One popular class of quantum error correcting codes that could help us do this are
Stabilizer Codes [I]. In this project we implement a general framework to encode and decode arbitrary stabilizer codes
in pyQuil on a Quantum Virtual Machine. We then characterize the performance of a few specific codes in this class
with real world noise models.

2 Methods

The key technical aspect of our implementation is a function to generate the encoding and decoding pyQuil programs
given the description of the stabilizer code in terms of the generating elements of the stabilizer group and its error
correcting capabilities. For an [n, k] stabilizer code, the encoding program encodes any input state on k qubits to the
corresponding encoded state on n qubits. The decoding program takes as input the (noisy) encoded state on n qubits,
applies the error correction and decodes the encoded state back to the original state on k qubits E The code for this
is available at stabilizer_code.py. We have also implemented a framework that takes in a generic stabilizer code
specification, a generic noise model (via Kraus operators) and computes the logical error rates for this pair.
We used this to run the following experiments to characterize the performance of codes on various noise models.

1. Basic tests to see if the code can correct one bit flip, one phase flip, one Y gate, one H gate, a combination of
an X and Z gate on different qubits. We have tested the framework for the bit flip code, the phase flip code,
the Steane code, the Shor code and the five qubit code (optimal code for correcting 1 error). To see this, run
basic_tests.py.

2. We pick a single qubit stabilizer code and a (parametrized) noise model, and then plot the logical vs physical
error rate curve achieved with this pair. Specifically, we use the following codes : bit flip code, phase flip code,
5 qubit code, Steane code. (We have an implementation of the Shor code that also works. however we did not
run simulations with it because it was slower than the other codes.) The noise models used are: bit flip noise,
phase flip noise, depolarizing noise, amplitude damping, and dephasing noise. Details can be found in the code
noisemodels_kraus.py. To rerun these experiments, simply run logical_vs_physical_error_rates.py.

We run this noise characterization in two ways -

(a) Our initial state is either |0) or |1) with equal probability. The reason to do this is that since we only measure
in the Z basis, it is not possible (without accessing the wavefunction from the simulator or performing state
tomography) to accurately measure how many times a error correction has failed if our initial states aren’t
one the computational basis states. However, this approach has severe flaws. Note that the bit flip code
encodes a|0) + §]1) as «]|000) + $]111), and a phase flip error (on all three qubits) would take this to
a|000) — 8]111), an error that can’t be corrected by the bit flip code. However, if the initial state was |0) or

L As we note in the appendix while describing our encoding and decoding circuits, the procedure provided in [I] had a slight bug. After
understanding the logic behind the procedure in complete detail, we made the appropriate corrections to the procedure. After contacting the
author of [I], we realized that these corrections were mentioned in an errata (http://www.perimeterinstitute.ca/personal/dgottesman/
thesis-errata.html).

https://github.com/shubhamchandak94/stabilizer_code/
https://github.com/shubhamchandak94/stabilizer_code/blob/master/stabilizer_code.py
https://github.com/shubhamchandak94/stabilizer_code/blob/master/basic_tests.py
https://github.com/shubhamchandak94/stabilizer_code/blob/master/noise_models_kraus.py
https://github.com/shubhamchandak94/stabilizer_code/blob/master/logical_vs_physical_error_rates.py
http://www.perimeterinstitute.ca/personal/dgottesman/thesis-errata.html
http://www.perimeterinstitute.ca/personal/dgottesman/thesis-errata.html

[1) (¢ =1 or @ = 0), the corrupted state is the same as the original state. This would give us artificially low
logical error rates (as we observe in our experiments as shown in the Experiments section.) To overcome
this, we tried the next point.

(b) Our initial state is a uniformly random point on the Bloch sphere. This has the advantage of not giving
artificial results, but has the drawback that we aren’t so much measuring whether we recover the initial
state as much as how close our recovered state is to our initial state. To elaborate, the drawback is that
sometimes our error correction algorithm could fail, but when we try to detect this using a measurement,
we may get cases where we think our algorithm has succeeded, simply because the initial and final states
are not orthogonal and hence not perfectly distinguishable.

3. We fix a noise model. depolarizing noise with parameter p = 0.4. We then plot logical error rates vs “code
rate” (number of logical qubits vs number of physical qubits) for various codes to study the trade-off be-
tween logical error rates and the amount of redundancy we add to a qubit. To run this experiment, run
code_rate_vs_logical_error_rate.py.

More instructions about using the code are available in the README at https://github. com/shubhamchandak94/
stabilizer_code/.

We now describe how we add noise to our qubits. One way to use pyQuil to add noise to qubits is to define a
set of Kraus operators, and redefine an existing gate (we choose the I gate) to apply these Kraus operators (which
correspond to noise) instead. Thus whenever our program calls for an I gate, this noisy I gets appliecﬂ This is the
method we use to add noise to our programs

Even though the procedure for encoding and decoding stabilizer codes is described in [I] and [2], the description in
these references was quite hard to follow. Thus, we present a systematic description of the circuits we use to encode
and decode stabilizer codes in the Appendix along with some examples. We encourage the interested reader to check
this out. Now we present the experimental results in the next section.

3 Experiments and discussion

Code n Error pattern
Bit flip 3
Phase flip 3
Shor 9
7

)

X, Z

Steane
Five qubit

N I
A NENE RO
A NENENENEV N
NN X X[
NN X x| T
> NN X% X

Table 1: Basic tests for selected Stabilizer codes showing the ability of each code to correct various single qubit errors and one
two qubit error. The last error pattern X, Z means applying an X gate and a Z gate to different qubits.

1. The experiment in Table [I| runs the basic tests to provide a sanity check for our implementation, as we see that
the error correction behaves as we expect it to. We can now move on to characterizing the performance under
different noise models.

2. We now run the 2"¢ experiment as listed in the Methods section. We use n trials for each data point (code, noise
model, noise parameter) and sweep the noise parameter from 0 to 1 with a spacing of 0.1. We show the results
below. On the left, the initial state is either |0) or |1), and n = 500. On the right, the initial state is a random
location on the Bloch sphere, and n = 2000.

Observations:
(a) For initial states |0) or |1), when we have dephasing or phase flip noise, the simulations suggest that all

codes except the five qubit code are perfect. However, this is simply a misleading artifact of our choice of
initial states, as we remarked in the previous section.

2This means that our framework for adding noise (though not the stabilizer encoding and decoding) is contingent on there not being
any actual I gates in the program. This isn’t a drawback functionally, but one needs to be aware of this while using our code.

30ne observation that might be of interest to anyone trying to implement noise in such a manner is that if we use the jgate modifiers
‘CONTROLLED’ and ‘DAGGER’ anywhere in our program, we can’t define noisy gates this way. We get an error that says “The noisy
QVM doesn’t support gate modifiers” when we try to add noise in such a manner to a program that has gate modifiers. Our workaround
seems to be to stop using the modifiers anywhere in our implementation, though this (slightly) limits the generality of what we are doing.

https://github.com/shubhamchandak94/stabilizer_code/blob/master/code_rate_vs_logical_error_rate.py
https://github.com/shubhamchandak94/stabilizer_code/
https://github.com/shubhamchandak94/stabilizer_code/
http://docs.rigetti.com/en/stable/basics.html##gate-modifiers

(b) The five qubit code has much higher logical error rates than other codes for several noise models.

(¢) The bit flip code (resp. phase flip code) does very well for bit flip noise (resp. phase flip noise) at reasonably
small noise levels, which is what we would expect.

(d) Tt is interesting to observe that the ranking of “best” code for a given noise model depends not only on the
noise model but also on the amount of noise. This can be seen because the logical error rates for different
codes cross each other, and is slightly surprising. This effect is most prominent in the plots for bit flip and
phase flip noise. In the bit flip noise experiment, we observe that the bit flip code does better than phase
flip code, Steane code (both of which have essentially the same performance) up to bit flip probability = 0.5,
and then this completely reverses. Note that in practice, if we know that the logical error rate is above
0.5 (as is clearly true in the left bit flip noise plot), it is prudent to apply a logical X gate to our encoded
qubits, just like in the classical case for Binary Symmetric Channels with error probability greater than 0.5.

Logical Error Rates for various codes with amplitude damping noise

Logical Error Rates for various codes with amplitude damping noise

- o5 bit_flip_code
—— bit_flip_code phase_flip_code

0.5 1 phase_flip_code —— steane_code
—— steane_code

— five_qubit_code
—— five_qubit_code 0.4

o
»

o
w
e
w
L

e
[N
L

Logical Error Rate

o
N

Logical Error Rate

0.1+
0.1+

0.0 1

0.0 1

T
. ; : . ; : 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0 amplitude damping probability
amplitude damping probability

Figure 2: Initial state is a random location on the Bloch

Figure 1: Initial state is either |0) or |1), trials = 500 sphere, trials = 2000

Logical Error Rates for various codes with bit flip noise

Logical Error Rates for various codes with bit flip noise
—— bit_flip_code
1.0 — bit_flip_code 067 phase_flip_code
phase_flip_code —— steane code
—— steane_code 0.5 4 — five_qubit_code
0.8 4 — five_qubit_code
&
® T 041
o =
= 061 2
5 53
& ™
= Y]
=
£ 04 3024
3
0.2 0.14
0.0
0.01 T T T T T T
. . . : - . 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 10 bit flip probability

bit flip probability

Figure 4: Initial state is a random location on the Bloch

Figure 3: Initial state is either |0) or |1), trials = 500 sphere, trials = 2000

Logical Error Rates for various codes with phase flip noise
Logical Error Rates for various codes with phase flip noise

0.6 0.6 4 — bit_flip_code
—— bit_flip_code —— phase_flip_code
—— phase_flip_code —— steane_code
0.5 1 — steane_code 0.5 1 — five_qubit_code
— five_gubit_code
@
1 0.4
» 04 T
E 5
E 0.3 @03+
w o
= Y
=4
) S 02
5021
0.19
0.1
0.0
0.09 T T T T T T
T T T T T T 0.0 0.2 0.4 0.6 0.8 10
0.0 0.2 0.4 0.6 0.8 10

phase flip probability
phase flip probability

Figure 6: Initial state is a random location on the Bloch

Figure 5: Initial state is either |0) or |1), trials = 500 sphere, trials = 2000

Logical Error Rates for various codes with depolarizing noise
Logical Error Rates for various codes with depolarizing noise

N — bit_flip_code
— bit_flip_code 0.6 1 —— phase_flip_code
0.7 { — phase_flip_code —— steane_code
—— steane_code 0.5 | — five_qubit_code
064 — five_qubit_code -
8
2 05 = 047
e 5
. =
£ 04 w3
= S
© @
2 0.3 o
2 =024
e
0.2 1
0.1
0.1 4
0.0
0.0 1 T T T T T T
; . ; . . 0.0 0.2 0.4 0.6 0.8 1.0

T
0.0 0.2 0.4 0.6 0.8 1.0

depolarizing probability
depolarizing probability

Figure 8: Initial state is a random location on the Bloch

Figure 7: Initial state is either |0) or |1), trials = 500 sphere, trials — 2000

Logical Error Rates for various codes with dephasing noise
Logical Error Rates for various codes with dephasing noise

0.6 4 — bit_flip_code
0.6 4 — bit_flip_code —— phase_flip_code
—— phase_flip_code —— steane_code
—— steane_code 0.5 4 — five_qubit_code
051 — five_qubit_code
£ 04
£ 04 &
& s
. £
e w 0.3+
i 0.3 =
© p
j=d
S
= S 02
S 02
0.1
0.1
0.0
0.01 T T T T T T
T T T T T T 0.0 0.2 0.4 0.6 0.8 1o
0.0 0.2 0.4 0.6 0.8 1.0

. dephasing probability
dephasing probability

Figure 10: Initial state is a random location on the Bloch

Figure 9: Initial state is either |0) or |1), trials = 500 sphere, trials = 2000

3. For the third experiment, we plot logical error rates vs code rate. We use depolarizing noise with parameter 0.4
and 1000 trials.

Remark: Naively, one would expect that codes with lower rate (higher redundancy) would have better error
correction capabilities, but we can see that for the depolarizing channel this isn’t true. The higher rate codes
have lower logical error rates. We are not entirely sure why this happens.

Logical Error Rates vs code rate various codes with depolarizing noise (0.4)

0.42
#teane_code

0.40 4 dive_qubit_code

Logical Error Rate

0.34 4
Phase_flip_cod

0.32 Sit_flip_code

0.150 0.175 0200 0.225 0.250 0.275 0300 0.325
Code rate = num of logical qubits / num of physical qubits

Figure 11: trials = 1000

4 Possible Future Directions

1. The logical next step would be to test our implementation of our codes on an actual quantum computer. The
challenge here is that the Rigetti quantum computer we have access to does not currently have the functionality
to perform gate operations after measurement, which is crucial to error correction after measuring the syndrome.

2. Our current implementation is capable of implementing a generic stabilizer code. The flip side of this generality
is that if we wanted to implement specific codes, it is possible to do so in a more optimized manner (fewer
gates, fewer ancilla qubits). In particular, CSS codes (a subclass of stabilizer codes) could be implemented more
efficiently, and a future direction could be to try and implement this.

3. Currently we are adding noise to our qubits, but our gates are still noise free. It is possible to redefine the entire
program to run with noisy gates (appropriately defined). Implementing this sort of noise would be closer to how
real quantum computers would behave and hence characterizing code performance in this framework would be
a useful thing to do.

4. Since we are simulating these codes on a virtual machine, we can in principle get access to the wavefunction of
a state. This would help solve the issues with trying to compute logical error rates that pertain to the choice of
initial state. We could start from a random Bloch state, and at the end of the correction procedure compare the
output wavefunction to the known initial wavefunction (using perhaps a trace distance or fidelity metric). This
would perhaps be a more principled way of measuring the efficacy of a code.

Acknowledgements

We thank Prof. Will Zeng for helpful discussions and feedback.

References

[1] D. Gottesman, “Stabilizer codes and quantum error correction,” arXiv preprint quant-ph/9705052, 1997.
[2] M. A. Nielsen and I. L. Chuang, Quantum error-correction, p. 425-499. Cambridge University Press, 2010.

[3] S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for beginners,” Reports on Progress in
Physics, vol. 76, no. 7, p. 076001, 2013.

[4] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Physical Review A, vol. 70, no. 5,
p. 052328, 2004.

[5] A. Steane, “Multiple-particle interference and quantum error correction,” Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and Engineering Sciences, vol. 452, no. 1954, pp. 2551-2577, 1996.

[6] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, “Perfect quantum error correcting code,” Physical Review
Letters, vol. 77, no. 1, p. 198, 1996.

Appendix

A.1 Circuits for encoding and decoding

In this section, we describe the circuits for encoding and decoding stabilizer codes. While the procedure is partially
described in the references [I], [2] and [3], the presentation was not very systematic and was hard to follow, perhaps
due to lack of a programming environment when these works were published. Therefore, we describe the circuits in
the form of a pseudocode in this section. Most of the procedure is based on the discussion in Chapter 4 of [I]. Note
that we only provide the algorithm in this section with only a few comments on the reasoning behind the steps. The
detailed discussion about the correctness of the various optimizations is provided in [I]. Examples of the procedure
for selected codes is provided in Section

Crash course on stabilizer codes

An [n, k] stabilizer code encodes k logical qubits to n physical qubits and is specified by an order 2"~ subgroup S
of the Pauli group on n qubits G, (up to global phase factors). For a valid code, elements of S must commute with
each other. A state on n qubits |¢) is a valid codeword state if and only if for every S € S, S|¢) = |¢). It can be
shown that the codewords form a subspace of dimension k, allowing us to encode k logical qubits. Also, the group S
is generated by a generator set of size n — k. We will work with the generator set throughout the section.

Example: Consider the bit flip code with n = 3, k¥ = 1 and the generator set {ZZI,ZIZ}. The entire sta-
bilizer group is given by & = {ZZI,Z1Z,IZZ III}. Tt is easy to verify that the span of {|000),|111)} forms
the one-dimensional codeword subspace stabilized by the elements of §. One possible encoding function is to map
[Y) = a|0) + B|1) to |¢), = «|000) + |111), where the L in the subscript denotes logical.

To understand the error correction capabilities of the stabilizer codes, consider an error operator £ € G,,. If £ € S,
then it doesn’t impact the state so we have no issues. If F ¢ S but E does not commute with some element in
S, then we could detect the error by measuring the stabilizer operator eigenvalue (recall that elements in G, either
commute or anticommute, so the measurement will give 1 or -1 depending on whether there is an error). If £ ¢ S
and F commutes with all elements in S, we are in trouble since the state gets transformed to another valid codeword.
Thus, it is possible to find the error patterns that a stabilizer code can correct. For further discussion about the error
correction capabilities of stabilizer codes, see Section 10.5.5 of [2].

Example (contd.): For the bit flip code, consider the following error patterns:

e F=17Z7: This is in § and doesn’t modify the codeword.

e F = XII: This is not in & but anticommutes with ZZI, so this can be detected by measurements. E.g., for
|v), = «|000) + 3[111), applying E gives us E [¢)), = a|100) 4+ £ |011). This has eigenvalue -1 for the operator
7 Z1, and hence the error can be detected.

e F = ZII: This is not in S and commutes with all elements of S. For |¢), = «|000) + 3|111), applying E gives
us E'|¢), = «|000) — 3|111) which is a valid codeword corresponding to [¢) = «|0) — 3 |1). Hence this error
cannot be detected.

Finally, we discuss operators acting directly on the encoded qubits, referred to as logical operators. In particular
we are interested in logical X and Z operators acting on logical qubit i, denoted as X; and Z;, respectively. The action
of these operators is defined by X; |¢); = |X;¢); (and similar for Z;). These operators need not be unique in general
and always commute with the stabilizers and with each other (in particular, multiplying the logical operator with a
stabilizer gives another operator performing the same logical operation). The encoded Y operator is given by X;Z;
(ignoring global phase).

Example (contd.): For the bit flip code, we can take X; = XXX and Z; = ZZZ. E.g.,

Xy)y, = XXX (a]000) + 8 [111))
= a[111) + B]000)
= |X11/)>L

It will convenient to represent the stabilizer generators and the logical operators in a binary matrix format. The
idea is to denote I by (0,0), X by (1,0), Z by (0,1) and Y by (1,1). The stabilizer generators are represented as
a (n — k) X 2n matrix with the first n columns representing the first entry in the tuple and the the last n columns
representing the second entry in the tuple. Similarly, the logical operators are represented as a k x 2n matrix (one row
per logical qubit).

Example (contd.): For the bit flip code, the stabilizer generators {ZZI,ZIZ}, the logical X operator (X X X)
and the logical Z operator (ZZZ) and are represented as

(888}(1)?),(1 1 1[0 00),(00 0|1 1 1),

respectively.

Preprocessing

Given the stabilizer generator matrix of size (n — k) X 2n, we first apply Gaussian elimination (using row swaps, row
additions mod 2 and column swaps) to the left half to obtain

— s n—r

N N
I A B c\ }r
0 0 D E) In—k-—r

where 7 is the rank of the left half. Then we perform Gaussian elimination on E’ (which must have full rank for valid
generator matrices) to get
r n—k—r k r n—k—r k
AN A~ AN A~ A~ AN
M = I Aq Ao B 4 Cy }7“
(0 D) n—k—r

Note that when we perform Gaussian elimination on a submatrix, we need to perform the same row/column
operations for the rest of the matrix as well (in particular, column swaps correspond to swapping qubits and when
swapping columns in the left half, the corresponding columuns in the right half should be swapped as well).

Given this representation, the logical X and Z operators are given by

T n—k—r k T n—k—r k
_ =~ =~ =~ = =~ =
X=(o EB' 1 |E'CT+Cf 0 0)
r n—k—r k r n—k—r k
_ ~ = =~ N /= =~ =~
Z= (9 0 0 | AT 0) Yk

Next, we generate a map from syndrome measurements to the corresponding correction operators, i.e., a function
feor + {0, 1}”"“ — Gy,. The syndromes correspond to the measurement of the n — k stabilizer generators. We assume
that we are provided with a list of errors that the code can correct (such a list can be obtained as discussed in Section
10.5.5 for [2]). Some example error patterns are (i) X on first qubit, (ii) Y on third qubit, (iii) X or first qubit, Z
on fifth qubit. For codes that can correct all single qubit errors we would have 3n error patterns corresponding to X,
Z and Y errors on each qubit. If the code can also correct one X and one Z error, we get n(n — 1) additional error
patterns. Clearly the correction operator is the same as the error pattern since the Pauli matrices are self-inverse.
Each error pattern e € G,, can be represented as a 1 x 2n binary row vector. The corresponding syndrome is given by
eM™ (mod 2). The process for constructing the map feo, is as follows:

e Set fCOT(O"_k) =1.
e For e in set of error patterns:
— Set feor(eMT) =e.
e For any remaining syndrome s in the domain of feor, set feor(s) = I.

The first step sets the error correction for perfect syndrome to identity and the last step takes care of any syndromes
that are not produced by the specified error patterns. For degenerate codes such as Shor code [2], multiple error patterns
give the same syndrome, but any of them work for the error correction step.

Encoding

We next describe the encoding circuit which starts with the state |¢) in qubits n — &k to n — 1 and |0) in ancilla qubits
0 to k — 1. After encoding, the n qubits contain the state [¢);. The full logic behind the circuit is given in [I], but
the core idea is to first prepare the encoded |0), state and then use the X1, operators controlled by [) to modify it
to a general encoded state (although these steps are swapped for optimization reasons).

1. Fortin0...k—1:
e Forjinr..n—k—1:
- If X;; =1, apply CNOT(n — k + i, j).
2. Fortin0...r—1:
e Apply H (7).
o If M; y; =1, apply S(i).
e For jin0...n—1:
— If j =4, continue.
— Apply controlled Pauli (M; ;, M; ,+,) on qubit j controlled by qubit 7.

Remark: In step 2, the procedure provided in [I] first applies H gate on all r qubits and then does the remaining
operations in a separate loop (with the S gates replaced by Z gates). Unfortunately that procedure was incorrect
and did not produce a codeword in the correct subspace for certain codes. After understanding the logic behind the
procedure in complete detail, we made the appropriate corrections to the procedure. After contacting the author of [I]

regarding this, we realized that these corrections were mentioned in an errata (http://www.perimeterinstitute.ca/
personal/dgottesman/thesis-errata.html)). Also, a slightly more efficient encoding method has been developed in

Z
Decoding

The decoding consists of three main steps:

1. Perform syndrome measurements: measure the stabilizer generators using the general measurement circuit shown
in Figure [12] (also see Section 10.5.8 in [2]).

2. Apply correction according to the syndrome using the map feo.

3. Decode the n encoded qubits [¢); to the k original qubits |t)). This is described below.

00| H T H HA A

n qubits
n qubits

A
Stabilizer
Operator

Y

Figure 12: Measurement circuit for stabilizer operator.

For step 3, we start with the state [¢), in qubits 0 to n — 1 and |0) in ancilla qubits n to n+k —1. At the end, we
are left with |0), in qubits 0 to n — 1 and the decoded state [1)) in qubits n to n + k — 1. The procedure is as follows:

http://www.perimeterinstitute.ca/personal/dgottesman/thesis-errata.html
http://www.perimeterinstitute.ca/personal/dgottesman/thesis-errata.html

e Foriin0...k—1:
— Forjin0...n—1:
* If Z; nij =1, apply CNOT (j,n +i)).
— Forjin0...n—1:
* Apply controlled Pauli (X; ;, X; »,+;) on qubit j controlled by qubit n + i.

Section illustrates the process for the Steane code [5] and the five qubit code that corrects one qubit error [6].

A.2 Examples for encoding/decoding procedure

In this section, we illustrate the encoding and decoding procedure with two examples. These examples were generated
using the code at https://github.com/shubhamchandak94/stabilizer_code/.

Steane code

The Steane code is a [7,1] code defined by the 6 stabilizer generators

XXXXIIT

XXITXXI

XIXIXTX
ZZZZITT
ZZI11ZZ1
Z1Z1Z17

Note that the each stabilizer generator has either X or Z but not both. Thus, Steane codes belong to the class of CSS
codes [2] and have additional properties such as ease of applying several logical operators directly on the encoded data
as well simpler decoding procedure [3]. The matrix representation of the generators is

111 100O0]00O0O0O0O0O© 0
11001 1 0{0 0 O0O0O0O00O
101010 1{0 0 O0O0O0O00O0
00 0O0O0OO0OOOBD1T 1T 1T1TO0O0O0
000O0O0OO0OO0OB1TT1O0O0T1T1O0
0 00O0O0OO0OO0O|IL O1 0101

After applying the Gaussian elimination steps we obtain » = 3 and

10 0j1 0 1|1j0 0 0|0 O O]O0
01 0|1 1 0}j1|{]0 0 0j0 0 0|0
M= 001411 1{0{0 0 0|0 0 0|0
0 00j0 0 0jO(1 1 1(1 0 0]0
0 0 0j0 0 0jO0|1 0 1j0 1 0|1
0 0 0j0O 0 0jO0|0O 1 1j0 0 1|1

In this representation, we get
X=(0 000 1 1/1|/0 0 0|0 0 0]|0)
Z:(O 0 O‘O 0 0‘0‘1 1 O‘O 0 0‘1)

where we show the block structure of these matrices.
Finally the encoding and decoding circuits for this code are shown in Figures [I3] and [I4] respectively. Note that
the decoding circuit only shows step 3 in the decoding.

https://github.com/shubhamchandak94/stabilizer_code/

0o 10y H —e

r |\IJ>L

110 HOH e
2 oy Ht+H——e——
3 10 | AN Jany N
| - NV N
s 10 —D i § Jant Jan
)P ; ; Nva N
M A | A
> o \f | NP NP
: | Jart P
& ¥ : o NP

Figure 13: Encoding circuit for Steane code.

Five qubit code

The Steane code is a [5,1] code defined by the 4 stabilizer generators

XZZX1
IXZZX
XIXZZ
ZXIXZ
The matrix representation of the generators is
100 1 001 1 0O
0100 1{0 0110
101 0 00 0 0 1 1
010101 00O01
After applying the Gaussian elimination steps we obtain r = 4 and
10 0 Off1|1 1 0 11
M— 01 0 0f1|j0 0 1 110
100 1 01|12 1 0 0J0
000 1{1|1 0 1 1|1
In this representation, we get -
X=(00 0 0f1|1 0 0 1]0)
Z=(0 00 O0fO0]1 1 1 11)

where we show the block structure of these matrices (note that here n — k —r = 0).
Finally the encoding and decoding circuits for this code are shown in Figures [L5] and respectively. Note that
the decoding circuit only shows step 3 in the decoding.

10

— 0 ® —
1 L
2 “ew
- 3 - r |0>L
4 Ja Y
\J/
5 N
1
L6 fan\ .
1/
AN AN U
10y NVZRAN VAN VA 2
Figure 14: Decoding circuit for Steane code (only step 3).
10) H S z Z —
I
10) Z H H z
10) z {{H Z —),
— :
10> Z z H H S
—: , .
v & -

Figure 15: Encoding circuit for the five qubit code.

11

0 —e Z

1 L 4

2 ’ - 10,
3 ? 3 Z

4 /L 7,

o (—~p—~p—~p—~p—=)

Figure 16: Decoding circuit for the five qubit code (only step 3).

12

	Introduction
	Methods
	Experiments and discussion
	Possible Future Directions
	Circuits for encoding and decoding
	Examples for encoding/decoding procedure

