
CS269Q: Quantum Programming Spring 2019

Final Project Guidelines
May 9, 2019

The course project is the capstone of the class. It is preferred that you do these projects
in groups of three, however groups of less than three will accepted. There are two ways to
approach the project:

• (Programming Project) You and your group will choose a topic in quantum com-
puting and implement an interesting program along with a short report (3-5 pages)
that is relevant to that topic.

• (Theory Project) You and your group will choose a topic, research a few relevant
papers, and write a research report 7-10 pages that covers the theory results for your
project.

In both approaches, original research is encouraged, but not necessary. A list of suggested
project topics is provided below. You and your group can either choose from these topics or
suggest an alternative of your own design. This is an opportunity to combine your interests
and your own background (in machine learning, optimization, distributed systems, physics,
etc) with what you’ve learned in this course.

Importantly, you will need to pick a project that is doable in the time frame given (from
mid-May to June 6th). You and your group will have to submit a project proposal by May
17th, and I will give guidance on whether the scope is appropriate for the course.

Here are some suggestions on how you can pick topics for your project:

1. Choose a suggested project topic area from the list at the end of this document.

2. Take something youre already doing research in, and explore if there is a quantum
version of it.

3. Take a topic covered in the class, and investigate it more deeply.

4. Take a topic in quantum computing you’ve always wanted to learn about (but wasn’t
talked about in class).

1 Deliverables

Here is what is expected of you (the last one is optional and the middle ones depend on if
you are doing a programming or a theory project):

1



1. (Project Proposal) Your group will submit a proposal on Gradescope that includes
your group names. This proposal is due on May 17th. This should be at most one
page describing your proposed project, along with some relevant papers/resources. A
strong initial proposal will include the topic area, the general structure of the intended
implementation, as well as the key results that will be intended to use in the research
report. I will give feedback and suggest additional papers or implementation sugges-
tions. Feel free to make an appointment to discuss your project in person.

2. (Project Progress Update) A less than one page written update on your project
progress from each group. This is due on May 27th. It should describe the progress
you have made against your original proposal, including any changes of direction and
results so far.

3. (Programming Project Only: Code Repository) No later than June 6th your
group should upload your final project code to either (i) a publicly viewable repository
(github, gitlab, bitbucket, etc.) or (ii) a private repository whose access credentials
are provided in your report (see below). Your code should include full instructions on
how to install your project as well as instructions for how to get started and use some
of its key features. If you have alternative packaging methods that are needed please
include these in your project proposal.

4. (Programming Project Only: Short Written Report) Your group must upload
a final report no later that June 6th to Gradescope. It should be 3-5 pages long.
It can be longer, but we will only read submissions longer than 5 pages at our own
discretion. Please use reasonable margins and font sizes. This report will describe
what is interesting about your project and the data/examples you have taken with
your implementation to show that it works. It should also include some remarks on
potential future extensions of your work. Your report should describe how to find and
access the repository with your code.

5. (Theory Project Only: Written Report) Your group must upload a final report no
later that June 6th to Gradescope. It should be 7-10 pages long. It can be longer, but
we will only read submissions longer than 10 pages at our own discretion. Please use
reasonable margins and font sizes. This report will describe the research background
for your project and what extensions / constructions / proofs you have made in your
project. It should also include some remarks on potential future extensions of your
work.

6. (Online Showcase) We plan to showcase the students project on the course homepage
for other students and researchers to see what cool things you’ve done. Participation
in the showcase is optional, and has no effect on your grade. Benefits: your project
gets some publicity, and also the quantum computing community benefits from what
you’ve built! You have the option of making either/both/none of the report and code
accessible openly.

2



2 Types of Projects

Here are some examples of types of projects that you can do:

1. Compare implementations across frameworks. In these projects you can take an
example algorithm or compilation trick and implement it in a few different frameworks.
In the course we have mostly used pyQuil, but there’s also IBM Qiskit, Microsoft Q,
Project Q, Pennylane and Strawberry Fields and others. For a list of frameworks to
potentially work in check out: https://qosf.org/project_list/

2. Implement a small instance on a real QPU. Here you will take an algorithm that
runs on a simulator and massage it into a small instance that runs on a QPU. This
can be tough! Today’s QPUs are small and very noisy. However, this type of project
is likely to be very rewarding and may even end up as a potential publication after
further development and work. For this course you will have access to Rigetti’s QCS
system and IBM also provides a small QPU backend with its IBMQ platform. Should
you wish to use the Rigetti QCS system please indicate this in your proposal and we’ll
get you set up.

3. Benchmark implementations across emulators. Some quantum algorithms (Shor’s,
Grover’s, HHL) are too big to be run or even simulated today. In those cases you can
write implementations that compile into programs, but that these programs can’t yet
be run except in very small instances. You can instead compare different methods of
implementing these algorithms and compare program outputs along metrics like of
qubits or gate depth.

4. Build developer tools. In the following course project areas there are lots of devel-
oper tool suggestions. A project of this type would show the main feature(s) of the
tool and how it helps with quantum programming in the near or far.

5. Theory Project: Extend an algorithm from the https://quantumalgorithmzoo.org/

3 Course Project Topics

Here are some potential course project topics. This is by no means an exhaustive list of
things you can do. If you end up curious about an area and are looking for more references
then please do ask on Piazza and we’ll be happy to follow up. If you are struggling with
choosing a project then we recommend you choose the Default project (given below). You
can also schedule an appointment to discuss your interests and brainstorm a project.

1. Default Project Write your own version of a QVM in a language of your choosing
(default is Python). This QVM should accept as many legal Quil statements as pos-
sible. The grammar for Quil is given here http://bit.ly/quil-spec with semantics
described by Smith et al. [2016]. Benchmark the performance of your QVM against
the Rigetti QVM.

3



2. Pick a theoretical algorithm from https://quantumalgorithmzoo.org/. Implement
a version of the algorithm in pyQuil. What are concrete runtimes and memory needs
(Quil instruction depths and qubit numbers) for specific small instances?

3. Single qubit quantum state tomography comparisons. There are several ways to re-
construct a quantum state from tomographic analysis. Several examples are given
in Schmied [2014]. Implement and compare a few of these methods and use them to
perform tomography on qubits on a real QPU.

4. Implement and benchmark a simulated version of Variational Quantum Unsampling
Carolan et al. [2019], a new technique for analyzing quantum programs.

5. Pick a language that has no support for quantum programming. Build a pyQuil like
library to generate Quil using this language. What new features can you now use?

6. OpenQASM is an intermediate representation for quantum programming that is similar
to Quil. Write a transpiler that takes Quil code and converts it into OpenQASM for as
many language features as possible. For more details on OpenQASM see Cross et al.
[2017] and the online spec at https://github.com/Qiskit/openqasm.

7. Implement and benchmark the traveling salesman problem using QAOA on the QVM.

8. Inserted Tomography for breakpoint debugging. In general one doesn’t have access to
the wavefunction of the quantum memory of a real QPU. This can make debugging dif-
ficult as we want to look at the wavefunction of the quantum memory at different steps
in our program. Write a small pyQuil library that makes it easy to insert breakpoints
into a pyQuil program that will run tomography at that breakpoint and reconstruct
the wavefunction of the quantum memory at that step in the program. Note that this
will only work on subsets of qubits, so perhaps an argument of the breakpoint is what
qubits to do the tomography on.

9. Benchmarking Optimizers. Pick a variational quantum problem, e.g. QAOA with
MAXCUT, and test several ways of optimizing the variational angles in the program.
What classical methods of optimization work best? Why?

10. Simulating the Ising Model with VQE. In Cervera-Lierta [2018] an example is given of
a simulation of a physical system called a 1D Ising model. Make your own implemen-
tation and benchmark of this simulation.

11. Choose a constrained optimization problem that has a reduction to MAX-CUT. Use
this reduction (and any tricks you can find) to make a QAOA implementation of this
algorithm that runs on the QVM or could run on a QPU. Benchmark this implemen-
tation.

12. In Gottesman [2016] several examples are given for small quantum circuits (5 qubits
or less) that benchmark fault tolerant operations. Implement these circuits and test
them on a noisy QVM and/or a QPU.

4



13. The Steane code from Steane [1996] improves upon the Shor code as a small code
for quantum error correction. Implement this code for a single qubit and plot the
logical error rate vs. different physical error rates under different noise models for this
code. You could also do this for any other quantum error correcting code such as those
described in Devitt et al. [2009].

14. In Abramsky and Brandenburger [2011] a family of inequalities are described that pro-
vide a metric for contextuality in a system. Use this framework to test the contextuality
of states prepared on a noisy QVM and/or QPU.

15. Compare how different choices of hardware ansatzes perform on a range of VQE prob-
lem instances. Why should some work better over others? If some qubits are much
noisier than others, how does this affect what ansatz you should choose?

16. Given a quantum program and a quantum instruction set architecture (a topology
along with noise characterizations for your QPU) write a compiler that converts that
program to one that is better optimized for your particular quantum ISA. How much
better can you do?

17. Implement and test a quantum secret sharing scheme protocol as described in Hillery
et al. [1998] and Cleve et al. [1999].

18. Write a tutorial - with interactive notebooks and that is accesible to students with
background from this class - that shows how to use OpenFermion to simulate electronic
structure problems on quantum computers.

19. Write a simulation of the Surface Code quantum error correction protocol Fowler et al.
[2012]. Use it to calculate a threshold for the surface code.

20. Color codes Landahl et al. [2011] are another version of a topological quantum error
correcting code that is different from the surface code. Implement a color code on some
small lattices and calculate the fault-tolerant threshold.

21. (Theory Project) What is the analog for Shannon channel capacities for quantum
channels? How can we use this capacity to show optimality bounds for quantum error
correction or quantum algorithms?

22. (Theory Project) Investigate Kuperberg’s algorithm for the dihedral coset problem
(DCP) Kuperberg [2003]Kuperberg [2011]. What is the concrete running time analysis
of the algorithm? The papers only gives an asymptotic analysis.

23. (Theory Project): Extend an algorithm from the https://quantumalgorithmzoo.org/.
Pick an instance (or family of instances) of the algorithms where you can calculate con-
crete runtimes analytically.

5



4 Important Dates

• May 17th: Project proposals due.

• May 27th: One page project update due.

• June 6th: Code repository and short report due.

References

Robert S. Smith, Michael J. Curtis, and William J. Zeng. A Practical Quantum Instruction
Set Architecture. 8 2016. URL http://arxiv.org/abs/1608.03355.

Roman Schmied. Quantum State Tomography of a Single Qubit: Comparison of Meth-
ods. 7 2014. doi: 10.1080/09500340.2016.1142018. URL http://arxiv.org/abs/1407.

4759http://dx.doi.org/10.1080/09500340.2016.1142018.

Jacques Carolan, Masoud Mosheni, Jonathan P. Olson, Mihika Prabhu, Changchen Chen,
Darius Bunandar, Nicholas C. Harris, Franco N. C. Wong, Michael Hochberg, Seth Lloyd,
and Dirk Englund. Variational Quantum Unsampling on a Quantum Photonic Processor.
4 2019. URL http://arxiv.org/abs/1904.10463.

Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open Quantum
Assembly Language. 7 2017. URL http://arxiv.org/abs/1707.03429.

Alba Cervera-Lierta. Exact Ising model simulation on a quantum computer. 7 2018. doi:
10.22331/q-2018-12-21-114. URL http://arxiv.org/abs/1807.07112http://dx.doi.

org/10.22331/q-2018-12-21-114.

Daniel Gottesman. Quantum fault tolerance in small experiments. 10 2016. URL http:

//arxiv.org/abs/1610.03507.

Andrew Steane. Multiple Particle Interference and Quantum Error Correction. 1 1996.
doi: 10.1098/rspa.1996.0136. URL http://arxiv.org/abs/quant-ph/9601029http://

dx.doi.org/10.1098/rspa.1996.0136.

Simon J. Devitt, Kae Nemoto, and William J. Munro. Quantum Error Correction for Begin-
ners. 5 2009. doi: 10.1088/0034-4885/76/7/076001. URL http://arxiv.org/abs/0905.

2794http://dx.doi.org/10.1088/0034-4885/76/7/076001.

Samson Abramsky and Adam Brandenburger. The sheaf-theoretic structure of non-locality
and contextuality. New Journal of Physics, 2011. ISSN 13672630. doi: 10.1088/1367-2630/
13/11/113036.

M. Hillery, V. Buzek, and A. Berthiaume. Quantum secret sharing. 6 1998. doi: 10.
1103/PhysRevA.59.1829. URL http://arxiv.org/abs/quant-ph/9806063http://dx.

doi.org/10.1103/PhysRevA.59.1829.

6

http://arxiv.org/abs/1608.03355
http://arxiv.org/abs/1407.4759 http://dx.doi.org/10.1080/09500340.2016.1142018
http://arxiv.org/abs/1407.4759 http://dx.doi.org/10.1080/09500340.2016.1142018
http://arxiv.org/abs/1904.10463
http://arxiv.org/abs/1707.03429
http://arxiv.org/abs/1807.07112 http://dx.doi.org/10.22331/q-2018-12-21-114
http://arxiv.org/abs/1807.07112 http://dx.doi.org/10.22331/q-2018-12-21-114
http://arxiv.org/abs/1610.03507
http://arxiv.org/abs/1610.03507
http://arxiv.org/abs/quant-ph/9601029 http://dx.doi.org/10.1098/rspa.1996.0136
http://arxiv.org/abs/quant-ph/9601029 http://dx.doi.org/10.1098/rspa.1996.0136
http://arxiv.org/abs/0905.2794 http://dx.doi.org/10.1088/0034-4885/76/7/076001
http://arxiv.org/abs/0905.2794 http://dx.doi.org/10.1088/0034-4885/76/7/076001
http://arxiv.org/abs/quant-ph/9806063 http://dx.doi.org/10.1103/PhysRevA.59.1829
http://arxiv.org/abs/quant-ph/9806063 http://dx.doi.org/10.1103/PhysRevA.59.1829


Richard Cleve, Daniel Gottesman, and Hoi-Kwong Lo. How to share a quantum secret.
1 1999. doi: 10.1103/PhysRevLett.83.648. URL http://arxiv.org/abs/quant-ph/

9901025http://dx.doi.org/10.1103/PhysRevLett.83.648.

Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Sur-
face codes: Towards practical large-scale quantum computation. 8 2012. doi: 10.1103/
PhysRevA.86.032324. URL http://arxiv.org/abs/1208.0928http://dx.doi.org/10.

1103/PhysRevA.86.032324.

Andrew J. Landahl, Jonas T. Anderson, and Patrick R. Rice. Fault-tolerant quantum com-
puting with color codes. 8 2011. URL http://arxiv.org/abs/1108.5738.

Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden sub-
group problem. 2 2003. URL http://arxiv.org/abs/quant-ph/0302112.

Greg Kuperberg. Another subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. 12 2011. URL http://arxiv.org/abs/1112.3333.

Thanks to Henry Yuen and his Quantum Computing: Foundations to Frontier for inspiring
some of the design of this final project. http://www.henryyuen.net/classes/fall2018/

7

http://arxiv.org/abs/quant-ph/9901025 http://dx.doi.org/10.1103/PhysRevLett.83.648
http://arxiv.org/abs/quant-ph/9901025 http://dx.doi.org/10.1103/PhysRevLett.83.648
http://arxiv.org/abs/1208.0928 http://dx.doi.org/10.1103/PhysRevA.86.032324
http://arxiv.org/abs/1208.0928 http://dx.doi.org/10.1103/PhysRevA.86.032324
http://arxiv.org/abs/1108.5738
http://arxiv.org/abs/quant-ph/0302112
http://arxiv.org/abs/1112.3333

	Deliverables
	Types of Projects
	Course Project Topics
	Important Dates

