
CS269Q: Quantum Programming Spring 2019

Project #3
Due: 11:59pm on Wed., May 8 2019, by Gradescope

This project contains both coded solutions (labelled practical) and written problems (labelled
theory). These are to be submitted separately to gradescope. For the coding problems there are
two template files provided. The file compilation_template.py includes further instructions for
coding up Problems 1 and 2. The file grad_template.py includes further instructions for coding
up Problem 3. You will need to submit two files to gradescope compilation.py and grad.py with
your coded solutions.

Problem 1. Gate Compilation
(Practical - 20pts) Write a pyQuil function that compiles all CNOT gates in a program into CZ
gates.

Problem 2. GHZ implementations
A GHZ state on n qubits is defined by |0...0〉+ |1...1〉/

√
2. This state can be made in quantum

memory with

H 0

CNOT 0 1

CNOT 0 2

...

CNOT 0 (n-1)

Similarly, one can do:

H 0

CNOT 0 1

CNOT 1 2

...

CNOT (n-2) (n-1)

However, as we saw in lecture, some QPUs don’t allow us to perform CNOT operations between
arbitrary qubit pairs directly.

a. (Practical - 10pts) Program each of these and verify that they produce the same operator for
n = 5.

b. (Theory - 5pts) Depending on the architecture, the first implementation may be more ineffi-
cient than the second implementation. Why?

c. (Practical - 30pts) Implement a function called ghz_compile which takes as an argument a
graph of qubit indices (defined by a list of edges) which defines where two qubit gates are
allowed to be applied. Your function should then return a pyQuil program that produces a
GHZ state over all those qubits. You can assume that the graph you are provided is connected.
*HINT* The networkxlibrary is a very helpful library for working with graphs in Python.
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Problem 3. Quantum Program Gradients

In this problem we will reproduce what Pennylane does under the hood to calculate gradients of
quantum circuits. You will find [1] to be a useful reference.

A key strategy for machine learning on quantum computers is to use the standard gradient
descent algorithm. For this, it is necessary to compute the gradient of some cost function C with
respect to all free parameters α of a circuit, i.e., ∇αC. This gradient information can be used
to determine update rules for the free parameters, namely in the direction of steepest descent:
α→ α+∇αC
For example, let us consider the following quantum circuit:

In this example, a qubit starts in the |0〉 state, rotations are done about the x and y axes, and
the expectation value of the Pauli-Z observable is obtained. The free parameters are given by
α = (θ1, θ2).

One of the key features of PennyLane is that it performs automatic differentiation of quantum
circuits, i.e., it automatically computes ∇αC for you.

This makes computing gradients a simple one-liner. Note that since there are two parameters,
the gradient is a two-dimensional vector:

grad_value = qml.grad(circuit, argnum=[0,1])(theta1, theta2)

# Note: we could also do qml.grad(circuit, argnum=[0])([theta1, theta2])

print("Gradient of C:", np.stack(grad_value))

a. (Practical - 10pts) Implement this circuit as a qnode in Pennylane. See the template code for
details.

b. (Theory - 7pts) Pennylane’s gradient computations are based on analytic formulas (i.e., it is
not a numerical finite-difference method) and leverage the quantum hardware itself to evaluate
them. In this notebook, we will walk through an example of how this is done, focusing on
computing the gradient for the specific circuit above.

Our first step is to derive the analytic formula for the gradient of our objective function. The
objective function is C, which has the form

C = 〈0|R̂†
X(θ)R̂†

Y (φ)P̂ZR̂Y (φ)R̂X(θ)|0〉,

where, for later convenience, we use the notation P̂j to denote the Pauli operator for j =
X,Y, Z.

Use the product rule and formula ∇θR̂X(θ) = − i
2R̂X(θ)P̂X to show:

∇θC = − i
2

Tr
(
P̂ZR̂Y (φ)[P̂X , ρ̂]R̂†

Y (φ)
)

where [·, ·] denotes the commutator and we have combined some terms together to form the

new operator ρ̂ = R̂X(θ)|0〉〈0|R̂†
X(θ).
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c. (Theory - 8pts) Simplify this expression (see Eqn (2-3) in [1]) to show:

∇θC = 1
2〈0|R̂

†
X(θ + π

2 )R̂†
Y (φ)P̂ZR̂Y (φ)R̂X(θ + π

2 )|0〉

− 1
2〈0|R̂

†
X(θ − π

2 )R̂†
Y (φ)P̂ZR̂Y (φ)R̂X(θ − π

2 )|0〉

d. (Practical - 10) Here we can make a key observation about this final gradient formula: each
term above can be evaluated using the same circuit as the original function C, but with shifted
parameters.

This is the key insight behind the “parameter-shift” gradient trick. Gradients of quantum
circuits can often be evaluated using the same circuit, but with shifted arguments. Note that
the shift 1

2 is not infinitesimal, as might be expected if this were a finite-difference numerical
method.

Hand-code this gradient as a difference of two circuits and compare to the gradient result
from Pennylane in a function called circuit_grad. See the template for details.
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