
Solving the Traveling Salesman Problem Using QAOA

Daniel Henry
dhenry@stanford.edu

Sofia Josefina Lago Dudas
sdudas@stanford.edu

June 4, 2019

1 Using the Codebase

Our public repository can be found at https://github.com/danielhenry1/QAOA TSP. Our
implementation of the Quantum Approximate Optimization Algorithm can be found in the
file ’qaoa.py.’ To run this code, a user will need the following packages in a Python virtual
environment - numpy, scipy, pyquil and the Rigetti QVM. The QVM server will need to be
started and running. The user then simply needs to run the Python file and our program
will execute the QAOA algorithm and provide an optimal solution on a sample graph we have
provided in the file. If the user wants to adjust the provided adjacency matrix, the number of
cities, or the value of p in the QAOA, these values are clearly defined as globals at the top of
the file.

2 Project Overview

We implemented the Traveling Salesman Problem (TSP) using the Quantum Approximate Op-
timization Algorithm (QAOA) on Rigetti’s QVM. The TSP is an optimization problem that
minimizes the distance of a path visiting all cities in the given set of cities. The TSP and its
variants have many applications in fields ranging from microchip manufacturing to DNA se-
quencing. The Traveling Salesman Problem is in the class of NP-hard problems, meaning that
any classical solution will run in superpolynomial time. The naive solution to this problem,
that checks all possible routes, runs in time O(n!). We have included such a naive solution to
the TSP in our codebase in the file tsp.py. However, this problem is susceptible to a quantum
speedup, and implementation on a quantum computer can be used to find the solution more
efficiently.

In this project, we used the QAOA to generate solutions for the TSP when n is small, specifi-
cally getting QAOA to give optimal results when n = 3 and distances between the cities both
symmetric, and asymmetric. Although the algorithm running on the QVM is slower than imple-
mentations on classical hardware today due to repeated calls to the quantum virtual machine
server, we were able to generate a mapping from the problem to a Hamiltonian that has a
ground state with a solution to the TSP. This proof of concept shows that it is possible to

1



use quantum computers in a unique way to solve the TSP that is theoretically more efficient,
although in practice slower.

3 Implementation

We modeled our solutions using the same format as Homework Project 2 Problem 3, as follows.
Let xα,j be a set of n2 binary variables where α denotes a city and j denotes a time step in some
path. Thus x2,0 =1 means the path starts in city 2 in the zeroth time step. Likewise x4,n−1 = 1
means the path end in city 4 on the last time step. There are n time steps as we will visit each
city exactly once. We form a bitstring that represents a path as follows:

x0,0x1,0, ..., xn1,0x0,1, ..., xn−1,n−1

In our implementation, we attempted to express the hamiltonian constraints as Pauli Sum op-
erators that we could apply to the wave function and calculate the expectation of. We tried to
create parallel constraints to the homework, but had to make a few modifications. For example,
we created a Pauli Sum to represent the Hamiltonian that penalizes paths such that a city that
appear more than once, or not at all, in a given path. Additionally, we created a Pauli Sum
to represent the Hamiltonian that penalizes timesteps with more than one city in it. However,
instead of explicitly ensuring that we could only go between cities where an edge exists, we as-
sumed the graph was fully connected and represented by an adjacency matrix where every pair
of cities had a double representing the distance. In the use case where no edge exists between
a city, we would advise setting this entry of the adjacency matrix to FLOAT MAX or an equivalent.

The QAOA begins in a superposition over all possible solutions to the problem. The total
number of qubits used in the TSP is n2, and so the total number of possible solutions is 2n

2
.

We begin by applying a Hadamard gate to all qubits, generating this superposition over all
possible states.

In order to solve the problem, we had to generate a Cost Hamiltonian with a ground state
that is a solution to the TSP. To do this, at the beginning of the program we had to build a
Hamiltonian that penalized (1) states that repeated locations more than once, (2) states that
had multiple locations in a single timestep, and (3) states that had long distances between
stops. We think of (1) and (2) as constraints as they are non-negotiables in solutions, and (3)
as a penalty, as long distances between stops makes a solution inefficient. We created Pauli Sum
terms to penalize all three of these penalties, however weighing (1) and (2) more heavily so that
an invalid solution would never be chosen over an inefficient one. We modeled our Hamiltonian
using Pauli Sums that would penalize states that were invalid or inefficient solutions. We were
able to unify the implementation of (1) and (2) constraints with a function in our code called
penalize range().

What we realized was shared about penalties (1) and (2) was that both required that the
only states over a certain range of qubits be of the form 0i10n−i−1 for some i < n. For (1)
this was in a certain range of a timestep, as there should only be one city visited, and for (2)
this was in a range of all of the timesteps corresponding to a certain city, as each city should

2



only be visited once. Thus, we found the appropriate ranges to penalize, and passed into a the
function penalize range() that penalized all states not comprised of all 0s with one 1.

To penalize a range of qubits {q1, q2, ...qn}, we quickly realized that the Pauli expression
Z(q1)⊗Z(q2)⊗...⊗Z(qn) penalized all bitstrings of {q1, q2, ...qn} that were of the form 0i10n−i−1

for some i < n, except the state 1n. Thus, we needed an additional term that penalized just
the state 1n.

We realized that the matrix representation of I − Z =

[
1 0
0 1

]
−
[
1 0
0 −1

]
=

[
0 0
0 2

]
, and

thus I − Z tensored with itself n times would look, in matrix form, as


0 0 ... 0
0 0 ... 0
...
0 0 ... 2

, which

we could weight with a constant to penalize just the {1, 1, ..., 1}. Thus, our constraint penalties
were a linear combination of Z(q1) ⊗ Z(q2) ⊗ ... ⊗ Z(qn) + (I(q1) − Z(q1)) ⊗ (I(q2) − Z(q2) ⊗
(I(q3)− Z(q3)⊗ ...⊗ (I(qn)− Z(qn))))

After generating the Cost Hamiltonian, we also built a Driver Hamiltonian. This driver
Hamiltonian is parameterized in addition to the Cost Hamiltonian, and is included to ensure
that the space over the states is changing, allowing for the superposition to move and ultimately

settle into a ground state. This Driver Hamiltonian is defined as I(q0)−
∑n2

i=0X(qi)

These Hamiltonians, the Cost and the Driver, are exponentiated and parameterized using
two angle-dependent operators. We then take an expectation over these parameterized states
and classically optimize the angles used in these operators to discover the ground state of the
Hamiltonians. We take a final expectation once the optimization has converged to find the
likely ground states the algorithm has discovered.

4 Results

We were extremely pleased with our results for n = 3. Initially, we didn’t have an effective
cost penalty to penalize the state 111. We got the following result, in which there are two
valid solutions represented as top results, but less likely than the inaccurate initial result. The
majority of the invalid states were of the form 111 over the range, meaning that our method of
applying penalties was working correctly, we just had yet to penalize the 111 state.

After we began penalizing the 111 state for specified ranges in the Cost Hamiltonian, we
immediately saw results that put valid solutions as the most likely and removed the solutions
that included the 111 state for most timesteps. See Figure 2. At this point, we didn’t change our
method of penalizing terms any further. At this point, we were weighting equally constraints
(1) and (2) (which penalized invalid states), with (3) (which penalized long paths).

We realized that the weight penalizing long paths was comparable to the weights penalizing
invalid solutions, which instead should be non-negotiables. We then increased the weight that

3



would penalize invalid solutions, particularly all those that were not of the form 111 as those
were more frequently the form of invalid solutions. We saw that we were able to get all 6 valid
solutions in our top 10 most likely states. See Figure 3.

Finally, by further adjusting the relative weights between our two constraints and by setting
p = 3, we achieved a result in which all 6 valid states were the most likely states with a notable
drop to the next most likely state, the optimal result from the algorithm. See Figure 4.

5 Future Extension

There are a number of directions that the project could go in from this point. First, we would
like to experiment with a more generalized formula for effective weights to give to the penalties
as n increases. However, we were unable to generate much analysis on this front or on cases
where n is large due to runtime. Even when n was increased to 4, we saw an enormous increase
in runtime, which is expected as the number of possible states in the wavefunction grows at 2n

2

and quickly becomes unwieldy on the QVM. We were also interested in doing work on finding
analytic ways to find optimal angles γ and β which would lead to enormous speedups in the
program. We would also be interested in better defining what the runtime of the QAOA would
be, and whether it would be possible to show quantum advantage using this algorithm or oth-
ers like it for large n. One result that was surprising to us was that we did not see significant
improvements to our results with an increase in p. We achieved similarly successful results for
p values between 3 and 10. We expected to have much learer results for the higher p values.
Perhaps it is simply because our results for p = 3 were already good, but we are interested in
exploring in more detail how changes in p can impact the results.

We are comfortable with this report in its entirety as well as all of our codebase being
published online on the CS269Q course website. Thanks for a wonderful class!

6 Works Consulted

1. Edward Farhi, Jeffrey Goldstone, Sam Gutmann. A Quantum Approximate Optimization
Algorithm. 2014. URL https://arxiv.org/abs/1411.4028

2. Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G. Rieffel, Davide Venturelli,
Rupak Biswas. From the Quantum Approximate Optimization Algorithm to a Quantum
Alternating Operator Ansatz. 2017. https://arxiv.org/abs/1709.03489

3. Lou K. Grover. A fast quantum mechanical algorithm for database search. 1996. URL
https://arxiv.org/abs/quant-ph/9605043

4. Karthik Srinivasan, Saipriya Satyajit, Bikash K. Behera, Prasanta K. Panigrahi. Efficient
quantum algorithm for solving travelling salesman problem: An IBM quantum experience.
2018. URL https://arxiv.org/abs/1805.10928

5. Dominic J. Moylett, Noah Linden, Ashley Montanaro. Quantum speedup of the Travelling
Salesman Problem for bounded-degree graphs. URL https://arxiv.org/abs/1612.06203

4



Figure 1: Ineffective Cost Hamiltonian

Figure 2: Improved Cost Hamiltonian

5



Figure 3: Adjusted Weights Leads to All Valid States Likely

Figure 4: Further Tuning Created Optimal Result

6


