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1 Introduction

This project demonstrates an implementation of Shor’s algorithm for factoring.
The interesting component of this, and the topic of the remainder of the report,
is an implementation for period finding written in pyQuil, that could be run on
a QPU. In the discussed first attempt, older and inefficient methods for period
finding were used that were so limiting it was impossible to factor much more
than 3 bit numbers. In the second attempt, the code was improved to use the
2n + 3 qubit circuit construction, that has approximately O(n3) gate depth,
where n is the number of bits in the number to be factored.

2 First Attempt

The first implementation was somewhat naive. The challenging part of Shor’s is
period finding, which consists of quantum exponentiation, followed by an inverse
Quantum Fourier Transform to find the period.

To create the exponentiation circuit, the circuits described in [1] were com-
posed. In this case, the adder used 3n + 1 qubits. This is due to one n-bit
register for the value being added, one n-bit register for the carries, and one
n + 1-bit register for the sum. As we see in the second attempt, this is dras-
tically overkill if the number being added is known classically at compile time.
When doing modular addition, another n-bit register is needed for the modulo.
For controlled multiplication, an additional register is used for x, the value be-
ing multiplied in which is another n-bit register. Another n-bit register is used
in controlled modular exponentiation. This brings the total number of bits for
exponentiation up to 3n + 1 + n + n + n = 6n + 1.

The QFT is relatively standard, and consisted of a structure similar to the
one below:
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Importantly, this QFT is over 2n bits in the period finding algorithm, where
n is the number of bits in the number to be factored. Thus the first attempt
came in at a whopping 8n+ 1 qubits needed to factor. Needless to say, this was
insufficient as it was not possible to properly factor 4 bit primes on a personal
computer in a reasonable time. Thus, the more performant second attempt
followed.

3 Second Attempt

After further research it many improvements were found in [2], which suggests
a method for implementing Shor’s algorithm using only 2n + 3 qubits. For this
method, a few interesting optimizations are used.

The first improvement, as hinted before, is that when adding a number that
is known classically at compile time, the addition can be reduced to unitary
single qubit gates in the Fourier space. This reduces the number of bits needed
for addition down to n+1 qubits, the extra to allow for over/underflow detection.

To perform modular addition, only one additional bit is needed as an ancilla
to detect underflow when subtracting by N , bringing the number of qubits up
by only 1 to n + 2.

Multiplication necessarily has an additional register of size n, so the total
goes up to 2n + 2, and is the same for modular multiplication.

Finally, and probably most importantly, the paper discusses how to imple-
ment the QFT−1 interleaved with the exponentiation using just one more quibit.
This brings the total number of qbits needed for period finding to a minuscule
2n + 3. This is a remarkably clever design and is the ”secret sauce” of cutting
down on the number of qubits used.
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4 Runtime analysis

When implementing the final code, attempts were made to adhere to the speci-
fication in [2]. Therefore the final code uses 2n+3 qubits, and a sub exponential
number of gates. When using this implementation of period finding with the
classical implementation of the rest of Shors algorithm from [3], it was actually
possible to factor some products of primes on the QVM. The primes were not
very large, however, with the demo product being 21 and taking a few seconds.
Below are graphs of both the number of gates and the number of qubits used
for the circuit to find the period of relative variously sized products.
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These graphs are for all N such that N is a product of a pair of two primes
up until 19, using g = 3 for the initial guess.

Of note, there remain some improvements to gate count that were not imple-
mented. Foremost is condensing the addition gates into exactly n single qubit
gates. This is possible because the gates are all known at compile time and the
unitaries can be composed. The implementation detail that inhibited this was
bloating the instruction set by defining many different gates. However, it may
be the case that there actually is not performance loss here and would be good
further work. The expected gain of reducing the gate size by a factor of n is
very desirable.

Additionally, it is possible to reduce the number of swap gates in the modular
multiplication gates, but as mentioned in [2], this is not particularly interesting
as it leaves the total runtime relatively unaffected.

5 Conclusion

From cursory research, this is one of the first implementations of Shors algo-
rithm that is publicly available on github to use the Quil instruction set. The
other implementations, such as [3], frequently implement their own incarnation
of a quantum simulator, and many do not directly translate well to actually
implementation. Not only is this interesting for the Quil language, but it is also
interesting as it can be run directly on an actual QPU. Check out the code repo
at https://github.com/burtonwilliamt/pyquil shors.
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