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CHAPTER 1

Introduction to Circuit QED

Ircuit Quantum Electrodynamics (cQED) is a toolbox for implementing nontrivial
C quantum circuits that can be precisely designed and controlled. We begin this chapter
by putting the quantum mechanics of circuits on solid theoretical footing. We first describe
how the circuit operators of voltage and flux can be quantized. Then, the theoretical
framework of the Josephson effect and its realization as a nonlinear circuit element is
introduced. Finally, we show how circuits coupled with Josephson elements can achieve
QED effects.

This chapter benefits from a long history of excellent theses and pedagogical reviews
on the subject of Josephson quantum circuits. In particular, the beginning of this chapter
closely follows the seminal work by Devoret [1] and especially the recent treatment by
Girvin [2]. We rely on this foundation to advance a modern description of QED as a
natural consequence the Josephson effect beginning in Section 1.3.2. By treating our
cQED system as a ‘Black Box' [3], we are able to describe driven, coupled, nonlinear,
quantum circuits with a single framework. The consequence (Section 1.4) is an intuitive
set of quantum behaviors and ‘selection rules’ for a circuit that can potentially possess
many degrees of freedom.

In order to explore the rich behavior of a single cQED system (an otherwise-linear

circuit with one Josephson element), this chapter does not review the many other types of
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quantum circuits or superconducting qubits in detail. For this purpose, we refer the reader

to the reviews by Clarke and Wilhelm [4] and also the review by Devoret and Schoelkopf

[5].

1.1 Building blocks of cQED

Circuits made of capacitors and inductors have equivalent descriptions in mechanical
systems of masses and springs. We use that analogy throughout this section to justify our
intuition and make connections to other experimental techniques. For instance, voltage
(V) and flux (®) are collective phenomena. Typically in a circuit, a countless number of
charge carriers generate our measured V' or ®. Fortunately, we are able to abstract away
the microscopic forces that act on these solid-state charge carriers. This is analogous to
treating a many-atom chunk of material as a single mass with a single momentum: as long
as the inter-mass dynamics (lattice vibrations) occur at a sufficiently high frequency, we
can approximate these modes to be their ground state. Indeed, for aluminum circuits, the
equivalent modes (plasma oscillations of free charge carriers) occur at frequencies above
w/2m Z 10" Hz [6], five orders of magnitude higher frequencies than we consider here in
this thesis. The collective motion approximation is therefore well justified.

Superconductivity plays the vital role of suppressing dissipation in our circuits. Perhaps
more importantly, an ideal superconductor also gives us access to a dissipationless nonlinear
circuit element, which we describe in Section 1.2. In both of these cases, the gap of the
superconductor (A) gives us another ground state to consider, allowing more rigor to the
collective motion approximation [7]. The gap of our circuit's superconductor also sets a
limit to the temperatures and excitation energies that can be used [7]. The frequencies
associated with the break down of superconductivity are much smaller than the onset of
plasma oscillations considered above. When working with aluminum for instance, drives
above w/2m 2 2A/h (=~ 80 — 100 GHz for aluminum) can efficiently excite quasiparticles
above the gap.

Our operating frequencies are bounded below by the requirement that our resonant
circuits be in their quantum mechanical ground states. To achieve a Boltzmann factor
suppression of the first excited state to approximately one percent, we require then that
w/2m 2 bkgT. At the operating temperatures of a commercial dilution refrigerator
(T ~ 20mK), that requirement translates to w/2r 2 2GHz. These considerations

~Y

therefore place our quantum circuits squarely in the microwave domain.
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Figure 1.1: Quantum harmonic oscillators. (a) An electrical harmonic oscillator is
constructed by placing a capacitor (C) in parallel with an inductor (L). The conjugate
variables that describe the resulting oscillation are the charge on the capacitor Q and flux
through the inductor ®. The natural frequency of this oscillator is related to these two circuit
elements by w = 1/v/LC. (b) The analogous mechanical circuit to the LC oscillator is a
simple mass-spring system with mass m and inverse-spring constant k~!. In this oscillator,
the displacement of the spring & and the momentum of the mass p form the equivalent
conjugate variables to the system as charge and flux in the electrical circuit. The mechanical
oscillator has the resonant frequency w = /k/m.

1.1.1  The quantized circuit

To quantize a circuit we proceed in the canonical fashion [1, 2] by finding a Hamiltonian
for the system and its conjugate variables, which will become our quantum operators.
The foundational circuit to this thesis is the linear oscillator (Fig. 1.1). This circuit
combines a capacitor (C') in parallel with an inductor (L). On resonance, energy sloshes
between a charging energy (Ec = Q*/2C) and an inductive energy (E;, = ®2/2L). For
the mass-spring system, energy likewise oscillates between kinetic energy (p*/2m) and
potential energy (z?/2k~'). Combining the circuit's kinetic energy (E¢) and potential
energy (Ep) terms to form a Lagrangian [2] gives
Q2 @

- - (1.1)
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Because these elements share a node in the circuit, we can use the flux-voltage relation [1]

@(t)z/_;vmm:/@m (1.2)

to rewrite the charging energy as

CP? P2
2 2L

L= (1.3)

We recognize that flux through the inductor (& = LQ) is the conjugate variable of charge

[2], since

(5£

=L D. 14

0= (1)

Therefore, we have a classical Hamiltonian for this circuit that is
QQ
H=9%® = — 4+ = 1.
Q-L= + Yok (1.5)

Now, we are now ready convert these variables to quantum mechanical operators (e.g.
® = ®) and the Hamiltonian as well (H = H). Additionally, we can factor Equation 1.5,
using

2+ = (@ + ) (@ — 1) — o [2, 7] (1.6)

to eventually simplify our circuit’'s description, now giving

A O $ 9) o
H_<m+zm> (m—zm> QM[Q @] (1.7)

The conjugate relationship between flux and charge in Equation 1.4 gives us the commu-
tation rules for free as [Q, @} = —uh [1]. The symmetric form of Equation 1.7 suggests

defining a simpler operator a such that

&:1 (i)—ZQ (1.8)
Viw \V2L  V2C )’ '

where w = 1/v/LC'. This substitution wonderfully allows us to recast the Hamiltonian [2]

as
H=hw(ala+3). (1.9)

We recognize this Hamiltonian as a simple harmonic oscillator with a frequency w, and



1.1. BUILDING BLOCKS OF CQED 5

Energy

Displacement (Q or &)

Figure 1.2: Energy levels of the quantum harmonic oscillator. The quadratic potential
yields evenly spaced energy eigenstates (AE = fw). The ground state of the system is
Gaussian distributed in the conjugate variables of motion, e.g. charge Q and flux ®. Note
that the circuit has finite probability |1/|? of being detected at a nonzero value of Q or & for
the ground state. This phenomenon is known as zero-point fluctuations of the circuit and
leads to a number of important consequences as we see in this chapter.

where the operator @ is the annihilation operator and afa = 7, the number operator.
Further, we can invert Equation 1.8 and its Hermitian conjugate [2] to rewrite the flux

through the inductor and charge on the capacitor as

A hZ
— 22 (AT s
¢ =15 (a' +a) (1.10a)
0=l (a" — a) (1.10b)
27 ’ ‘

where Z = \/L/C is the impedance of the circuit.

It is worth pointing out that the relationship between circuits and mechanical degrees
of freedom is more than an analogy. The first experiments to explore the ideas of Quantum
Non-Demolition (QND) measurements were attempts to observe gravitational waves in

the excitation of massive mechanical oscillators, transduced by LC oscillators [3] as

R ]52 1 ) @2 32 R
H=—+-m2 — 4+ = (). 1.11
2m—|—2mx +2L—|—2C—|—hng ( )
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where the term interaction term H,; = hgiQ is created by the mass being suspended
between two plates of a capacitor; displacing the mass changes the capacitor's charge
distribution. Today, electromechanical systems are exploiting this coupling term in to
explore the quantum dynamics of massive objects [9].

We now turn to solving for the ground state of the LC oscillator, which will prepare us

for studying driven circuits in Section 1.1.3 and nonlinear LC systems in Section 1.3.

1.1.2 Gaussian states in an LC oscillator

As for all harmonic oscillators, our circuit acquires non-zero variance of charge and flux,
even in its ground state, i.e.
2210\ — 2

These zero-point fluctuations can be related to the flux quantum (®y = h/2e) and the

resistance quantum (Rq = h/2¢?) [1] as

Z
2 RQ

R
Qzpr = €\/ 277_QZ (1.13b)

The circuit's impedance therefore determines the relative strength of these fluctuations.

(I)ZPF = (I)O

(1.13a)

We recognize in Equation 1.13 that a low impedance circuit has less flux noise but more
charge noise.

The shape of ground state wave function (|1o)) is interesting as well [10]. If we make
use of the differential operator in quantum mechanics, e.g. Q = —ih (3/0®), then the

statement a|iy) = 0 can be written as

(57 + —amp ) Mal@.Q) =0 (114)

A similar expression holds for (), and both of these equations have a Gaussian solution.

When normalized, this gives for the ground state

’¢O(Q)’ Q)) = 1 % e*(‘I’Q/‘@%PF*QQ/‘lQ%PF) (]__]_5)

V21 PyprQzpr

Because the Gaussian distribution is normalized by the zero-point fluctuations, it is often
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convenient to describe the circuit in a dimensionless quadrature representation as

. 1 .1
X = d=—(a+a 1.16

N \/E(a+a) (1.16a)
Y LA, S (a—a'), (1.16b)

h V2

such that which simplifies the wave function of the ground state to a highly symmetric

two-dimensional Gaussian form

1 2 2
[0(X,Y)) = —= x e A, (1.17)
V2T

The ground state is only one eigenvector of a. Actually, there are infinitely many such

solutions of the form
aly) = aly) (1.18)

where « is a complex number. All of these wavefunctions are Gaussian distributed in (X,Y)
with the same standard deviation as the ground state, but have some displaced centroid
(X0, Yo) = (R(e), () as

e~ (X=X0)*+(Y=Y0)?)/4 (1.19)

[V(X,Y)) =

v~
)

These states are given the name coherent states [11], and such states play a number of
important roles in this thesis.
We can use the eigenvector relation (Eq. 1.18) to learn about the photon statistics of
a coherent state. In particular, knowing the complex eigenvalue a gives us the ability to
exactly describe the distribution of the state across the entire Hilbert space of the mode.
To see how, we begin by stating the eigenvalue relationship more precisely in Fock-space
[10],
ala)y=aY _ Cyln)=ala). (1.20)
n

Using the definition of the annihilation operator, a|n) = \/n|n — 1), we have that

Cp= —Clpy = e Cly g = oo = ——C, (1.21)
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Figure 1.3: Photon number statistics of coherent states. The probability of the
oscillator to contain exactly n photons (F,) for coherent states of amplitude /3 is a discrete
Poisson distribution, truncated here for visibility at N = 10. The distribution broadens at
larger displacements since the variance is equal to the mean number of photons |3]2.

Then, we can express the coherent state in the Fock basis as

a) = exp(—la2/2) 3 jm ), (122)

where the normalization factor is found by the constraint that >~ |C,,|? = 1Equation 1.22
can be used to calculate any expectation value of the field quadratures. For instance,
the probability of detecting a coherent state in a specific Fock state |m) (P,,) is Poisson

distributed as
’a|2m

’Cm’2 :exp(—|a\2)w. (123)

The mean photon number 7 can also be calculated from the distribution of P,, to be
n = (alata|a) = |af*. (1.24)

Equation 1.20 can further be used to show that two coherent states also have a variance
of their number distribution An? = 7; that such states minimize quadrature uncertainties
(AX2AY? = 1/4); and that they form an overcomplete set of states on the Hilbert space
of the mode.

In the next subsection, we describe how these states are the natural consequence of

classical drives.
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1.1.3 Arbitrary classical drives on linear circuits

In this section, we consider the effect of an arbitrary, but linear, classical drive on an LC
oscillator. Such a drive can only take a coherent state in the oscillator, e.g. its ground
state, to another coherent state [12]. That transformation be can described by a unitary

operator, called the displacement operator [11],
D(a)|0) = |), (1.25)

where « is the amplitude of the displacement and |a|? is the resulting average photon
occupancy.

A derivation for the form of the displacement operator that is particularly useful for our
purposes is given by Girvin [2]. Consider that, as discussed in Section 1.1.2, any coherent
state is equivalent to the vacuum state up to a transformation of coordinate systems.
Therefore, a finite amplitude coherent state is at the origin of some X', Y’ plane. We have
confidence then that we can obtain a precise description of ﬁ(oz) by requiring that this
operator offsets the coordinate system of a state by —« but otherwise leaves it unaffected.
Following Girvin, for this type of transformation, we can use Taylor's theorem that for a

function of one variable

f(x) = f(a)+ f'(a) ((E—CL)—F%(CL)@?—G)Q—F... (1.26)

Furthermore, we can express this infinite series equivalently as an exponentiated differential

operator, a form attributed to Lorentz, as

fla) = e f(a) (1.27)

r=a

For a given initial state wave function, |3), transforming the coordinates by X=X-a

can be written explicitly [2] as

D()]3) = exp(~a-5)H(X)) (1.28)

X=p

We use that Y = (:/2)(d/dX) to write the displacement operator as

D()|B) = exp(—21aY)|B) = exp(—a(a — a'))|8). (1.29)
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We can show a number of interesting properties about D, but perhaps the most important is
to check that D on the vacuum state produces the correct coherent state. We rewrite the dis-
placement operator in a more convenient form D(a) = exp(—|a|?) exp(4adil) exp(—aa)

[11]. Since @|0) = 0, we only have to keep the a' terms:
D(a)|0) = exp(—|al?) exp(+ad')[0), (1.30)

and we use a Taylor series in the exponentiated operator [10] to yield

n

(+ad*)
n!

D()|0) = exp(—|af*) ) 0)

(. (1.31)
= exp(—faf*) T In)

which is indeed the same form for |«) as Equation 1.22.

A formal proof that Gaussian states of circuits are only trivially affected by an arbitrary
drive is adapted from [12] in Appendix ??. However, an intuitive toy model is as follows.
Consider an arbitrary current source coupled to the flux of our inductor as shown in

Figure 1.4. The evolution of the circuit will be governed by
H(t) = hwa'a — I(t)D = he(t)d (1.32)

where we have introduced € in order to work with more convenient units. We proceed by

taking a rotating frame to remove the harmonic oscillator term [13], leaving

A

Hi(t) = he(t)D, (1.33)

where now ® has rotating ladder operators a = ae ™",

Any physical drive, i.e. presenting finite dissipation to the circuit, will result in a drive
that is a differentiable function. Therefore, we can find an infinitesimally small time ¢
over which the Hamiltonian is approximately time independent. The circuit, initialized in

some coherent state |f3y), will therefore evolve via the unitary propagator

|Bst) = ﬁdm’ve|/80> ~ €_Zﬁ5t/h’50> = 6_Zeoé‘i)Wo) (1.34)

Under these conditions, the propagator is cast as a displacement operator with da = €ydt.

Then, the tilde on & simply determines the angle of the displacement. Taking many
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Figure 1.4: Effect of an arbitrary drive on a damped oscillator. (a) An LC oscillator
is biased with a time-dependent current drive. Here, damping is provided by the finite input
impedance of the current source. The driving current couples to the conjugate flux variable
to add a potential to the system as Hyyipe(t) = —I(t)®. The resulting state of the resonator
can be shown to be a coherent state for all times. (b) The probability of detecting the
oscillator at a given displacement (X,Y) is shown (red) for a given trajectory of I(t). The
linear bias pushes the oscillator from its ground state (grey) to some coherent state |3).
However, at all times this trajectory can be equally described by displacing the origin of the
resonator along the dashed line. The oscillator remains in its ground state while the axes
X,Y are translated. Nonlinearity is needed in the system to create more interesting states.

snapshots of this process, we can build up the trajectory of an arbitrary drive. Furthermore,
we will always be stuck in a minimum uncertainty Gaussian state that resembles the
quantum vacuum.

In the next section, we meet our first nonlinear circuit element, the Josephson junction.
Such an element allows for even simple drives to generate states of our circuit that exhibit
striking quantum mechanical properties, markedly different than the simple noise addition

of the uncertainty principle.

1.2 Josephson junctions

A Josephson tunnel junction is created by sandwiching a thin insulating layer between two

superconductors [14]. Supercurrents tunneling between the two superconductors obey the
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Josephson equations [7, 15]. In particular, the current and voltage across the barrier is

related to the phase difference between the two superconductors (§) as

I =1Iysing (1.35a)
de 21V
L 1.35b
dt Dy ( )

where the constant of proportionality Iy is the critical current of the junction. We will
describe later how such tunnel junctions are made in the practice (Section ??). For now,

we focus on the new types of circuits we can make with this element.

1.2.1  Nonlinear inductance

Clearly, the Josephson relations are nonlinear. To see how such a junction can act like an
inductor, consider the definition of inductance, L = V/I. Taking the time-derivative of

the current-phase relation (Eq. 1.35a) gives

dl de 2rnl)V
= — I cos &Y
g = Tocosox o d,

oS (1.36)

where we have used the second Josephson relation (Eq. 1.35b) to compute the time-
derivative of the phase [1]. These simple calculations allow us to define the Josephson

inductance L as
P

Ly=———.
/ 2mlycos

(1.37)

Often, the cos ¢ term is ignored to quote a ‘Josephson inductance’ value for a given tunnel
junction (L) in nH. For the typical devices we will discuss in this chapter, Ly ~ 1—10nH.

Many quantum circuits make use of the full sinusoidal capabilities provided by the
Josephson effect [16, e.g. and references therein]. However, we restrict ourselves in this
thesis to the small phase (¢ < 1) limit. In that limit, we have an inductance that is

approximately o ,
Ly~ 0 (1 + 24 O(¢4)> . (1.38)

~onl, 2
The effective inductance of a Josephson junction increases at higher phase bias. This is
shown schematically in Figure 1.5. We could imagine constructing an LC oscillator using

such a circuit element as the inductor. Then, the resonant frequency of the circuit should
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2 27
_Iz[osin%o

Energy

Flux across junction (&)

Figure 1.5: Josephson effect as a circuit element. (a) A Josephson junction is formed
by separating two superconducting electrodes by a small layer of insulating material. The
resulting junction serves as a nonlinear circuit element. (b) The current-flux relationship of
the Josephson effect is sinusoidal. We can ascribe an inductance to our new circuit element
as Ly = ®/I, which is linear to first order (purple). At larger values of ® the linear term
over-estimates the inductance of the junction. (c) The basic sinusoidal potential leads to
low-lying energy states that have an anharmonic spectrum. The successive approximations
to this potential are a quadratic V5(®) and quartic V4(®) Hamiltonian terms described in
this chapter.

depend on amount of energy circulating in it. Remarkably, that intuition describes the

quantum properties of such a circuit, as we will see next.
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1.2.2 Quantized Josephson effects

It is often more convenient to work in the flux basis when evaluating the behavior of the

Josephson element [1]. We can equally describe the phase across the junction as a flux
D = Dy, (1.39)

We can then quantize phase on an equal footing to charge and flux as before, i.e. p = <f>/<1>0
[1]. Furthermore, the energy added to our system by a current and voltage at a junction is

given by &1, or

H; = —F;cos (@)/QDO> , (1.40)

where 2
E; =2 1.41
’ 27TLO ( )

is the Josephson energy. In the small flux limit limit (|(®)| < ®y), we can expand the
cosine Hamiltonian of the Josephson junction in higher order operator terms with rapidly

decreasing magnitude [3], as

~ 2 N 4
R 1{ & 1 (&
H~FE |1—-|— — = 1.42
S 2<c1>0> T <¢0> + (1.42)

The small flux limit is satisfied for

o
i—r < 1. (1.43)
P

Recalling that ®zpr x VZ (Eq. 1.13), we see that this limit can be satisfied for small
impedances in addition to small 7.

In the next section, we will see that the fourth order term in this expansion is sufficient
to give an LC oscillator full Hilbert state addressability [3], alleviating the problems of

simple harmonic circuits.

1.3 Quantum Josephson circuits

This thesis relies on the nonlinearity of Josephson elements to address individual transitions
of quantized circuits as if they were artificial atoms [17, e.g. and references therein] . The

many other uses of Josephson junction circuits for quantum mechanical applications, such
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as quantum limited amplifiers [18, e.g.], lossless frequency converters [19], or reconfigurable
circulators [20], is beyond the scope of this chapter.

In addition, we will describe a single type of Josephson atom, the transmon, in detail.
However, there are many other realizations of artificial atoms using Josephson circuits. We
refer the reader to the reviews in [4, 5, and references therein] for information about these

devices.

1.3.1 Black Box Quantization of a Josephson circuit

One of the simplest Josephson circuits is shown in Figure 1.6. A clever scheme to
approximately diagonalize this circuit by leveraging the small-phase limit was introduced
by Nigg [3] and is called Black Box Quantization (BBQ). For the circuit in Figure 1.6, the
small-phase limit is equivalent to the large-capacitance limit since Z < C~'/2. The idea in
[3] is to treat the linear part of the junction and accompanying circuit (H,) separately
from the nonlinear part of the junction (I:Inl). We proceed by finding the normal modes
of the circuit (wy's) and then introducing the nonlinearity later as a perturbation. More
precisely,
H—§+@+I§i = hwoata + H
=357 T30 = hwoa'a + Hyy, (1.44)
where the nonlinear part of the Hamiltonian (H,,) is given by

: By

H, = E;[1—cos(¢)] — 5 ¥ (1.45)

It is important to note that up to charging effects (see Section 1.3.2), Equation 1.44 is
still exact. From here, treating the nonlinearity as a perturbation will be a powerful tool
to solving the dynamics of our circuit. In particular, Equation 1.43 gives a prescription
for how many terms in this expansion we need to keep. The majority of thesis, and also
the majority of cQED, concerns the lowest order terms in the nonlinear Hamiltonian [21],
terms proportional to ¢*. However, at the conclusion of this chapter, we show how the
neglected terms can be enhanced.

The circuit in Figure 1.6 is an ideal transmon artificial atom [22]. In the next section,
we show show how the nonlinearity of the Josephson junction allows us to address its

individual levels and later, how to operate the transmon as a qubit [21, 23].
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(a) (b)
Dypp
c L W C L, o~ n

v v

Figure 1.6: Quantizing the Josephson LC oscillator. (a) A parallel LC oscillator is
shunted by the nonlinear admittance of a Josephson junction (box element). (b) The effect
of the Josephson junction is separated into two components, the linear term is absorbed
into the the total inductance of the LC oscillator, and a new element is introduced (spider
element) that contains only the nonlinear terms of the junction's response to flux (Hy) [3].
The solution to the Hamiltonian is determined, up to a scaling term E;, by the magnitude of
zero point fluctuations in the flux variable, or equivalently, the impedance of the LC resonator,
provided that the charging energy is negligible.

1.3.2 Transmon artificial atoms

The circuit in Fig. 1.6 is susceptible to low-frequency charge offsets since the junction
presents a high impedance tunnel barrier to unpaired electrons. This offset charge shifts
the total charge operator by Q = Q + Qs in Equation 1.44. The perturbation (f[Q) on
the Hamiltonian is two new terms

a (Q‘I’QofS)Q QZ o QOfs A (QOfS)z
Hy = ¢ eols) <o )Q+ o (1.46)

@~ 2C 20

The first term on the right hand side of the final expression accounts for the static voltage
induced by the offset charge. The second is a renormalization of the energy that could be
discarded, unless the offset charge is fluctuating, which is always observed experimentally
[24, e.g.]. Charge fluctuations cause dephasing for our circuit. These effects can be solved
for analytically, as discussed in detail [22], but, by working in the large capacitance limit,

we become exponentially insensitive to these charge offsets. This limit, where

E;> Q2;,/2C ~ €°/2C = Ex, (1.47)
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is called the transmon limit. For E; < E¢, this is known as a Cooper Pair Box (CPB)

charge qubit [25] and is sensitive to charge noise.

1.3.3 Driving a transmon atom

What is the fate of our nonlinear circuit under the drive we considered for the LC oscillator
in Section 1.1.37 The total Hamiltonian for the driven transmon atom is similar to original
expression (Eq.1.32), except with the addition of an H,, term (Eq. 1.45) of the junction.
Now, the driven system evolves under

E; .
_9027

H = hwa'a — he(t)(a + a') + By [1 — cos(@)] — 5

(1.48)

where the driving term is equivalent to Equation 1.32. Because of the cosine term, this
system evolves in a nontrivial manner.

Let us proceed by assuming a sinusoidal drive at wy. To calculate the effect of this
drive, let us perform the following transformations (for details, see for instance [26]). First,
we go into a rotating frame of the transmon w. This is accomplished by the unitary

operator [13],

A

U = exp(+wta'a), (1.49)
which transforms our Hamiltonian as
N d -~
H=UHU"+U [—za, U} . (1.50)
The resulting Hamiltonian is
H=H, +UH,U" (1.51)

where Hj is our previous driven LC oscillator Hamiltonian (Eq. 1.33). Therefore, we have

only to calculate the evolution of the nonlinear part of the Hamiltonian,

H, = ezwth&ﬁnle—zwth&‘ (152)
We can rewrite the cosine term as
~ 1 2P —1p
cos¢:§(e¢+e 7). (1.53)

Note that each of these exponential functions resembles a displacement operator, such
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that

e'? = ervolatal) (1.54)

which has the same form as D(up,) for a real number ¢,. Working with the exponential
form simplifies calculations significantly since a displacement about any angle 6 is still a

displacement. More explicitly,
e D (a)e ' = D(ae™). (1.55)

For 6§ = wt, then, we see that our rotating frame has the effect of bringing the time

dependence of the rotating frame into the cosine. Defining a rotating (o operator as

¢ =o(a+al), (1.56)

we then have
H; = Ejcos(p). (1.57)

Combining these terms, we are left with the rotating frame Hamiltonian

H(t) = he(t) (a+a') + E; [1 — cos (@)] — %@2, (1.58)

We can use another unitary transformation to enter into the displaced frame of the
drive [26]. This unitary has the form

A

U = e SWa'+€"®)a (1.59)
where £(¢) is a displacement amplitude. If the displaced mode has an energy decay rate ,
there is a clever choice of ¢ such that the frame becomes stationary [27]. That condition
is satisfied for the differential equation

d

d—i = — (g + zw(]) & —1e(t) (1.60)
If our drive is a simple, continuous wave (CW) drive at frequency wy, the solution to this

differential equation is

Zeoefzwdt

(1.61)

B ko + tjwg — wo|”
The squared-amplitude |£]? is effectively the number of drive photons. However, the

amplitude ¢ itself is quickly rotating.
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By choosing our displaced frame as Equation 1.60 we are left with a displaced, rotating
Hamiltonian that has a readily simplified form. Without any further approximations, the

driven transmon atom Hamiltonian is
T ~ ot * B3, ~ )2
H=EFE;[1-cos(go(a+a +£+£))]—T(a+a +&+&) (1.62)

To see the utility of the above expression, we again work in the small g limit. Now, we
can expand Equation 1.62 in powers of ¢ and examine the allowed transitions of the circuit,

as well as other ‘real atom’'-like effects. We expand the cosine using the Taylor series
R
Y= ——— ", 1.63
oS kz:% )] (1.63)

When expanding the Hamiltonain (Eq. 1.62), the zeroth and second order terms will drop

from our expression. We are left with

k, 2k

ﬁz—&é%(aqta“r&g*)%.

(1.64)

To make further progress, we need make a few approximations. The first is that we will
in practice only want to keep a finite number of terms. In fact, the lowest order (fourth

order) already provides a rich set of physics to explore [26].

i~ _EJ‘Pé
4!

(@+a +e+¢)" (1.65)

The binomial theorem has useful generalizations for non-commuting operators, in particular
Weyl operators [/Al,];’} =1, such as @ and a'. We can normal-order a polynomial of two

Weyl operators [28] using

n  Min[n,n—m)|

(A n 3)” — Z Z e B An=m—F (1.66)

where C,,,. is a combinatorial coefficient, given by

n!
26k (m — k)!(n —m — k)

Cormis = (1.67)

Because £(t) is a complex number as opposed to an operator (representing the location

of the displaced frame), £ will commute with the other Hamiltonian terms. However,
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by ignoring the noise terms associated with the drive, we are working in the limit of an
infinitely stiff pump.

We make our second approximation before trying to solve the resulting dynamics. In
the expansion, we will only keep energy conserving terms like af@ or £*¢, since, for these

wt )

terms, the quickly rotating parts (e.g. e™") cancel, making these terms stationary. In the

absence of drives (£ = 0), our transmon Hamiltonian reduces to

a'a'aa. (1.68)

4
Es@o tatpn = g

This is a Kerr-type nonlinearity [29, 30], where the energy spectrum of the system depends
quadratically on the transition level. If we look at the difference between neighboring Fock

states, the splitting increases linearly as
K
E...—E,= -5 (n(n+1) —n(n—1)) = —nKk (1.69)

Right away, we can see that if we have narrow enough frequency resolution, we may be
able to resolve such an intrinsic energy splitting in spectroscopy. In later subsections, we
will show that this intuition is correct but incomplete: spectroscopy on a Kerr-medium will
turn out to be much richer than Equation 1.69 would suggest.

Another way to think of the Kerr nonlinearity is to consider a mean field frame about
(n) ~ n [13]. We can reorder the nonlinearity as

H= g ((ata)? —a'a) (1.70)

Going into another rotating frame, at wy, will remove the second term on the right hand
side. Another way to say that is that an oscillator with a Kerr-type nonlinearity has
mean-field frequency that is proportional to the energy stored in the oscillator.

In the next subsections, we consider the effects of resonant and detuned drives w; # wy
on the transmon. We will see how our transmon atom can be excited or acquire an AC

stark shift from drives.

1.3.4 Exciting a transmon atom

While the displaced frame treated us well when we were considering steady-states of the
transmon, we abandon that transformation for the moment to consider a weak (|| < K),

resonant drive (wy = wp). We are particularly interested in how this drive affects the atom
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to lowest level approximations. In the rotating frame of the ground state and drive, we

have -

0=~ —= (afafaa) + heo (a' + @) (1.71)
In the case of the linear LC oscillator, the drive term would displace the system until
reaching equilibrium with the oscillator’'s decay rate. However, now higher states of the

transmon are detuned from the drive, i.e.
leo] < [A12] = K, (1.72)

where A;_, is the detuning between the drive frequency and the 1 — 2 transition. Because
of this detuning, the drive only dresses the higher states of the transmon virtually, giving
them an AC Stark shift (as we will see in section 1.3.4). Our weak drive cannot actually
excite these higher states at all.

The result is that transmon will undergo Rabi oscillations [31], where the population
cycles between the ground and first excited state of the transmon. If we ignore the dressing
effects of the higher-states, we can truncate our consideration to the lowest two levels of
the transmon, treating it a qubit. Indeed, working with this reduced Hilbert space allows

us to recover all of the simple Pauli matrix descriptions of qubits [31]. We can define Pauli

operators
6, =X (1.73a)
G, 2Y (1.73b)
6. = 2ata, (1.73c)

where the congruency (22) is used to call attention to the crucial exception that the
creation and annihilation operators are taken to only act on the lowest two states of the
Hilbert space, i.e. a'|1) = 0.

We can recast the truncated, resonantly driven Hamiltonian in a familiar form [31], as

- h
i = %C}x- (1.74)

This effect is well described as a continuous rotation about the two-level system’s Bloch

sphere about the x-axis. The drive takes |g) to |e) in a time

2
T = — (1.75)

€0
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Changing the phase of |e|e*’ changes the Bloch-sphere angle that the procession will follow,
e.g. along 6, for @ = 7/2. Therefore, any point on the Bloch-sphere can be reached with
this simple treatment. We will examine more of the consequences of this procession later
(Section ?7). First though, there are a few more striking physical consequences that occur

beyond the two-level atom description that are worth exploring.

Climbing the ladder

If we initialize the transmon in an excited Fock state, say the N** Fock state, a choice of
drive frequency can force Rabi oscillations between the |N) and | N 4 1) states, allowing
us to ‘climb the ladder’ of the transmon [32]. To see this, let us go into the rotating frame
of given by

K

WN =W — EN(N —1). (1.76)

If we consider just the nearest laying states we can write the undriven Hamiltonian as
Hy=K |(N—1DIy_; — Nlly| | (1.77)
where we have introduced the projection operator Il for simplicity, defined as
Iy = |N)Y(N|. (1.78)

Now, if we drive the transmon that detuned from our reference frame by Ay = wy — wy,
our driven Hamiltonian now has quickly oscillating terms. But, if we detune the drive by
Ay = (N—-1)K or A; = —NK then we recover the two-level system description with the
selected Fock state acting as |g) or |e). For example, taking A; = —NK yields a similar
expression to Equation 1.74 except now the Pauli matrix converts population between | V)
and |N + 1):

G, = |N)(N 4+ 1|+ |N 4+ 1)(N| (1.79)
It is clear by induction (0 = 1 and N = N + 1) that all transmon levels can be reached
in this fashion. In addition, because we can halt the Rabi oscillation at any point on a

Bloch sphere, population can be spread across many levels of the transmon'’s Hilbert space,

which can have arbitrary phase. The resulting state will be of the form

) =D Culn). (1.80)
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However, for large states (spanning hundreds of excitations) with high symmetry, this
process is cumbersome because each Fock state must be prepared individually. Later, we
will see how another nonlinearity can provide some amount of parallelization to our toolbox
(Section 77).

AC Stark effect in a transmon atom

The AC Stark effect describes the response of an atom to a rapidly rotating external field
[33]. In this process, the atom acquires a dressing due to the detuned drive (A = wy —wyp),
causing the spectrum of the atom to change. Dressed-state splitting has deep connections
to nonlinearity. Recall that the ‘spectrum’ of the harmonic LC oscillator was unaffected by
any drive. Observing that a circuit exhibits the AC Stark effect, as in Schuster et al. [34],
is evidence that the system interacts with light in a highly nontrivial manner.

Consider Equation 1.65 with a very detuned drive (A > K), such that the only terms
valid in the Rotating Wave Approximation (RWA) [31] are afa and £*¢. We use the

expansion coefficients (Eq. 1.67) to write down that

N K
() ~ == (alataa + alalg(1)]?) (1.81)

Thus, the transmon has acquired a new dressed frequency that is proportional to the power

contained in the AC drive. The new frequency is detuned by

Buanklt) =~ S 16 (182)

For a CW drive, we can use Equation 1.61 to write

K €2
Agiare = — — 0 . 1.83
ke = 5 X (n3+<wd—wo>2) (1.83)

Essentially, even virtual photons (i.e. [£()]* > 0 but |aTa| ~ 0) can load the Kerr

nonlinearity.

AC Stark effect in a two-level atom

In the weak driving (¢ < K), small detuning (A < K) limit, wherein the transmon is

well-approximated as a two level system, we can solve for the AC Stark effect as commonly
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done for qubits [31]. The Hamiltonian is thus
H=—o0,——o, (1.84)

The new, dressed eigenstates have energies

Ei:—%ﬂ:glﬂﬁg‘FAQ. (185)

For A > €y we have shifted the ground state energy by

he? €\ 4
OB ~ 1+ 0 <Z) (1.86)

1.3.5 Selection rules and multi-photon transitions

It turns out that we can take short cuts on our way up the ladder too. At higher order
approximations, multi-photon transitions become allowed at certain drive frequencies
[21]. For fourth-order approximations to our transmon atom, we will show explicitly that
two-photon transitions between second-nearest neighbors is allowed. We then give a recipe
for extending these ideas to arbitrary transitions, allowing us to define selection rules for
our artifical atom.

For a second-order transition, we need terms in the Hamiltonian which connect second-

nearest neighbors like
[A{two-photon = hEO ((&T)Q + &2) . (187)

To see how these can come about, we start from the rotating, displaced picture at fourth-
order (Eq. 1.65). There will always be terms in the binomial expansion of this Hamiltonain

which have the form
Hy oc (£2(ah)? + (£9)%2) . (1.88)

These terms are usually thrown out by the RWA. However, consider a drive at a frequency
halfway between a given Fock state and its second-nearest neighbor, wy = 4(wy o +wy) =

3(wy — N2K). Then, two-photon terms like the above rotate at
£2<t>(C~LT)2 _ g2(d2)€21(wd—wN)t _ §2<&2)e—1N2Kt (189)

But, we see that since the |V + 2) state has an energy difference with the |NV) state
of 6E = —N?K, that time dependence is actually the correct rotating frame for the
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2 meaning

N — N + 2 transition! Importantly, the selection rule is proportional to |
that the Rabi rate now given by the square of the drive strength, now a function of €2.

In practice, this is a useful way to characterize the anharmonicity of a transmon circuit
in spectroscopy [21]. At sufficiently large drive strengths (enough that €2 can saturate the
transition), the detuning between a two-photon transition and a single-photon transition
gives us value of K directly (Af = K/2). Furthermore, this type of transition is easily
distinguished from the single-photon transition because the |ey|*> dependence reduces
line-broadening. Thus, the higher-order terms tend to be more narrow in spectroscopy, as
shown in Section ?7.

Sixth order expansion will give terms that are of the form £3(a®) and that a drive at
the appropriately chosen frequency can drive this term proportional to |€|?, and these
transitions can be observed as well [35]. Indeed, all transitions of the transmon atom would
be accessible by continuing this pattern. However, an O order transition is exponentially
hard to drive. Therefore, at some high order, we will break the approximation that ¢y < K.
Hence, these processes will no longer be selective. We will essentially start driving many

transitions at once, instead of driving single Rabi-like oscillations in Fock-space.

1.4 Coupling quantum circuits

Adding more degrees of freedom to our circuit, in the form of additional components,
can enable new functionality. For instance, circuits with multiple superconducting qubits
can be used to execute quantum algorithms [36] or quantum error correction [37—40].
Moreover, circuits with dissimilar types of components [41] can be useful for applications
such as quantum memory [42—44] or quantum communication [45].

One particularly important class of coupled circuits is a superconducting qubit coupled
to a linear resonator. This is a scheme known as circuit QED (cQED) [46, 47] for its
close analogues with Cavity QED (CQED) [13]. A cQED-type architecture protects
superconducting qubits from spontaneous emission [48], allows for multi-qubit gates
[49, 50], and enables high fidelity, QND measurements of qubit states [51, 52]. In this
section, we describe the theory of coupled transmon-resonator circuits, closely following

the approach used in Section 1.3.1 to describe a single transmon.
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Figure 1.7: Classical dressing of a linear circuit. (a) Two parallel LC resonators are
joined by a capacitor to form a simple coupled-circuit. Because of their interaction, neither
mode preserves its independence. This effect can revealed by sweeping any circuit element,
e.g. mode two's inductor L, and observing the new eigenmodes of the system. (b) The
linear circuit can be exactly diagonalized. The spectrum is shown as a function of Lo, with
shading representing the behavior of the two modes in the absence of coupling. The resulting
eigenmodes are wy = (w1 + we £ /g2 + A?)/2, where A is the detuning and g is the
coupling strength. Near resonance (A = 0), a level repulsion of w; —w_ = 2g is caused
by the interaction. The techniques in this chapter that diagonalize linear parts of more
complicated systems capture effects such as this mode-splitting. The splitting between these
two LC modes is a classical effect and can be observed with standard circuit elements on
printed circuit boards. (c) Spectroscopy data of the realization of avoided crossings in cQED.
A flux-tunable transmon qubit is tuned through resonance of several other modes. The size
of the avoided crossings is a classical parameter, although the evolution of the system at any
of these bias points is highly quantum. (Figure used with permission from [37]. See 77.)
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1.4.1 Black Box Quantization for many modes

The techniques for treating the Josephson nonlinearity as a perturbation can be extended
to systems with many coupled elements [3]. Before (Section 1.3.1), we proceeded by
diagonalizing the linear Hamiltonian, then introducing a term H,, to account for a nonlinear
inductance of the junction. For coupled circuits, we must solve a system of many hybridized
LC modes. However, the result will always be expressible as some number of resonant
modes [53], although the frequencies and characteristic impedances for an LC resonance
may be altered by the coupling. The linear Hamiltonian, after this diagonalization, can

therefore be written as

Hyp =hY oAl A, (1.90)

where A, represents the annihilation operator of the n-th, re-diagonalized mode. Because
these new eigenmodes are the same as their classical counterparts (Fig. 1.7), classical
circuit analysis is sufficient to solve this part of the system.

All we need now to treat the effects of our Josephson junction is the dressing of these
modes as seen at the ‘port’ of the junction. Essentially, each mode will contribute some

amount of flux toward the junction, as
=3 gy (Al + A, ) (1.91)

Luckily, we already know how to find the required ®%,. parameters too!

We saw earlier that the magnitude of the zero-point fluctuations was simply related to
the effective impedance of the circuit by Equation 1.10a. We now see that the relevant
characteristic impedance is the mode's impedance as seen by the junction. To find these
zero-point fluctuation values, we simply need to determine impedance of each mode.

Imagine that we had an impedance-probe at the junction looking out, which could
measure across a wide-range of frequencies. At each normal mode of the circuit, our
admittance would cross zero (giving us &,). Further, the slope of the admittance trace at

that zero-crossing is related to the mode's effective characteristic impedance [3], as

(@)

By rearranging Equation 1.92, we find a simple way relate the effective impedance that

_ Ay (1.92)

w=Gn  WnLeft

sets the scale of the zero-point fluctuations to a measurable, at least in theory, circuit
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Figure 1.8: Black box quantization of many modes. (a) The most basic circuit QED
schematic is a mostly-linear LC oscillator (resonator) coupled to a strongly nonlinear LC
oscillator (transmon). Both acquire their nonlinearity from a single Josephson element,
which also provides the cross mode-mode nonlinearity (such as cross-Kerr term x) to the
system. (b) To simplify the quantum mechanical treatment of the coupled system, first the
classical circuit is diagonalized and lumped into a ‘black box’ admittance term Y (w). (c)
The characteristic impedance of each resonant mode in the black box, as viewed from the
junction, sets the participation of that mode in the junction’s nonlinearity. That impedance
can be predicted from studying the classical circuit model of the system. The problem reduces
to finding the zero-crossings of the imaginary part of the admittance and the slope of the
function there (circles).
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parameter. Now, the magnitude of the zero-point fluctuations are given by
P
Pypp = = )
V2mRgw, Y,

where R, is the resistance quantum. Because Y, is a classical, linear circuit parameter,

(1.93)

traditional circuit simulators are also able predict ®7 .. natively, even for complex circuits

[3].

Our total Hamiltonian now reads
H=hY @ AlA, + Hy (1.94)
where H,, is defined equivalently to before (Eq. 1.45), except we replace the simple flux

operator by our new expression for total flux across the junction (Eq. 1.91) [3], giving the

full Hamiltonian as

1 — cos (Z ©On <AL + An>> Z Pn (./AlL + .fln)

where again, we will find it simpler to work in a unitless parameter ¢,, = 7, /P¢. Indeed,

2

~

E
Hy = E, -

(1.95)

the sum over all fluxes shows up as the operator ¢y, including for the quadratic term on
the right hand side.

The real utility of this total Hamiltonian becomes clear when we consider the fact
that distinct modes commute: [.Zln, Am] = 0pm. Iherefore, our frame transformations
from before can be done in parallel on this potentially massive Hamiltonian right away.
Going into the co-rotating frame, such that A, = A,e“", allows us to expand the total
Hamiltonian like before.

For simplicity, let us treat in some detail the simple case of two modes, truncated at

the fourth order. We can write the truncated Hamiltonian (similar to Eq. 1.65) as

H~ % [% (@ +a)" + (6T+6)]4 (1.96)

We use the RWA to find the dominant terms of this Hamiltonian [13]. In particular,
because our modes are detuned, we can discard terms like a'b in the expansion of the

quartic Hamiltonian. Collecting terms like a'a and bb, we see that each mode will acquire
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Figure 1.9: Cross-Kerr nonlinear effects. (a) Two prototypical oscillators, modes one and
two (shown as Fabry Perot-type resonators), store energy in a Kerr nonlinear medium. In that
nonlinear medium, the phase velocity of resonant light depends on the total energy stored,
leading to an effective length for the resonators which is dependent on the energy stored in
the other. A strongly nonlinear version of this system is realized in cQED architectures with
remarkable consequences. (b) If mode two is in a superposition of several Fock states, for
instance as a coherent state |(3)2, any state in mode one, shown as a single Gaussian state,
acquires a differential phase for each Fock state |m), at a rate x, where x is the strength of
the cross-Kerr nonlinearity. (c) With strong nonlinearity (x > k, where & is the linewidth of
the modes), the system enters the number-split regime of cross-Kerr interaction. Each energy
eigenstate of mode two |m)s is associated with its own transition frequency in mode one.
Shown are frequency spectra of mode one for three different coherent states in mode two.
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a Kerr term proportional to

_ B
4
This is a little strange. Our circuit under consideration began as a transmon sub-circuit

K (1.97)

coupled to many LC oscillators, but somehow, we ended up with just a bunch of transmons!
In retrospect, this might not be too surprising since a transmon, in our treatment, has
been a nonlinearly-shunted LC oscillator. Surely then, by introducing the same nonlinearity
to the other LC oscillators, they might be expected to dress with the Josephson effect in a
similar manner.

At fourth order, we acquire a new type of Hamiltonian term as well that has interesting
consequences for our circuit. We now find terms in the expansion that are a cross-Kerr
type nonlinearity [54], as

Hi = —E 020t ab'h. (1.98)

We define the cross-Kerr interaction strength as x., = E;02p7. Note that y is related to

the geometric mean of the two Kerr terms as

Xab = 2\/KaKb~ (199)

This makes intuitive sense since this nonlinear interaction is set by how hybridized each
mode is to the single Josephson junction in the problem. That same hybridization also
sets K,.

For two modes with a large detuning, X is the dominant coupling term. This regime
is known as the dispersive regime of cQED [54], a Hamiltonian that has also obtained with
CQED [13]. Now, if mode a is excited, for example in the Fock state |1),, our dispersive
Hamiltonian indicates that the frequency of mode b will shift downward by exactly x, since
(a'a) = 1 for Equation 1.98. A more interesting behavior is achieved whenever one of
the modes is in a superposition of Fock states. Then, an entangling interaction occurs
[13], whereby a superposition of Fock states in one mode forces the other mode to be in a
conditional superposition of many frequencies, as we will discuss in detail in Chapter 77.
In the next section, we show how this conditional frequency shift can be used to devise a

QND measurement of the qubit state.
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1.5 Detecting the state of a transmon

It might be interesting to probe a transmon directly with a Vector Network Analyzer
(VNA), for instance, measuring the atom in reflection, similar to the scheme of Hoi et
al. [55]. In this case, when the VNA (at weak probe powers) sweeps through a transition
frequency of an occupied level of our transmon, a single probe photon (at most) will be
exchanged with the transmon. Detecting a missing photon (absorption) or an extra photon
(emission) would inform us of the former state of the transmon. However, practically this
is a demanding requirement. Additionally, the real impedance of the VNA would introduce
unnecessary dissipation to the transmon, as we will discuss later in Section 77,

Instead, we will couple our simple transmon circuit to a filter element, an ancillary LC
oscillator [46, 47], and probe the response of the oscillator to infer information about the
state of the transmon [2, 56]. To detect the state of mode a, we need to determine mode
b's frequency with sufficient precision to determine whether it is w; or w, — x. There are
some nice properties of this proposal. First, if we can drive mode b with many photons,
our frequency detector does not need to be sensitive to fluorescence-like signal levels as
considered before. Also, this detection can be QND to good approximation [51, 52]. This
is opposed to schemes which rely on absorption or fluorescence, which detect a change of
state. Finally, if the readout mode is more strongly coupled to the detection apparatus, it
will filter real impedance of the detector from the transmon atom, extending the possible
lifetimes in the transmon mode [48].

Now, however, our readout mode has acquired some transmon-like behavior as shown in
the previous section. However, for a carefully designed circuit, we can largely ignore these
effects, and pretend that our filter retains its linearity. This is a reasonable approximation

for the readout mode whenever
Ep|(b0)]” < 1/ Ty (1.100)

where Ty, is the timescale for the experiment. Essentially, for a weak nonlinearity, the
number-state dependent phase accumulation by the Kerr effect may take more time to
acquire than we are sensitive to.

To use the conditional frequency shift of the readout mode (dw = x) as a detection

mechanism, sufficient frequency precision is required. Therefore, the measurement time
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will be on the order of Ty, ~ 1/x. By Equation 1.100, we then require that
Xab > Ky (b'D). (1.101)

Therefore, we must design circuits that have a large x.,/ K} ratio. Using Equation 1.99,
we find that these requirements can be distilled to working with a transmon having high
anharmonicity, such that

K, > K| (670) 2. (1.102)

Essentially, the above constraint is the extent to which we can assign the label ‘transmon’
to one mode and ‘resonator’ to the other. In practice, this inequality is easily satisfied
because usually only the transmon mode is galvanically connected to the junction. For
instance, we will study a sample in detail in Chapter ?? that fulfills this requirement up to
(b'b) ~ 500.

To show how the simplest readout schemes operate, consider our coupled Hamiltonian,
with the transmon truncated at its lowest two levels (Eq. 1.73), and ignoring the resonator’s

nonlinearity [46]. In the interaction picture, the Hamiltonian is given by

Xab

Hysp = TBTZB&Z. (1.103)

This expression is equivalent to the dispersive limit of the Jaynes-Cummings model for
CQED [13], albeit derived with a different set of systems, assumptions and approximations.

A typical technique for measuring the frequency of a resonator is to measure the

reflection coefficient of signals from the device [2, 56]. That coefficient is given by
Ay —1K/2
=— /- 1.104
" Ay +1k/2 (1.104)

where A, is the detuning between the probe and the resonator. For a probe tone tuned
halfway between the response of mode b to the transmon (w; = wy, — x/2), r can be

rewritten to account for the state-dependent shift [2] as

5. )2
. X0, —1k/

=" 1.1
X0, +16/2 (1.105)

If we define a the angle # = k/x we can simplify the reflection as a rotation in the 1Q

plane as
r=e 0% (1.106)
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Figure 1.10: Reading out the state of a transmon. (a) The frequency of the readout
resonator depends strongly on the state of the transmon qubit. The frequency shift x can
be much greater than the linewidth of the mode k. To probe the state of the transmon, a
common technique is to drive halfway between these two frequencies (purple arrow). Then,
the state of the transmon is encoded in the phase of the outgoing signal. (b) A readout
pulse builds up energy in the resonator that is leaked out to the measurement chain. For the
readout probe frequency shown in (a), the two states of the transmon vyield identical ring-up
type envelopes. c) The amplitude and phase of these signals are digitized, via techniques
described in a later chapter, and the measurement results are histogrammed. The relative
counts between the two distributions gives the probability the qubit was detected in the

ground or excited state (P, and F.).
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For a coherent input state, in the absence of the resonator’'s Kerr nonlinearity, this
phase angle is independent of the displacement size [2]. Therefore, phase contrast,
our measurement signal, will increase with larger displacements. We can quantify the
information contained in the reflected signal as the orthogonality of the resultant coherent
states. If the two states of the transmon (|0),, |1),, or equivalently |g), |e)) are mapped
onto a phase difference 6, the coherent states can be detected in unique states to the
extent that

(ae™|ae™) =0 (1.107)

We give the practical details of this detection scheme later in Section ?77.

1.5.1 Selection rules for many-wave mixing

We conclude our study of the simplest coupled-oscillator Josephson circuits with some
striking effects that can be observed by stimulating otherwise negligible processes in the
circuit with pumps.

We rely on the commutativity of our different modes in order to go into a co-rotating,
co-displaced frame [26], such that all modes can be driven by some field, transforming our

operators as
A, = Ay + & (1.108)

Our total Hamiltonian recovers a generalized form of Equation 1.62. A remarkable set of
interactions can be driven between the elements of our many-transmon artificial molecule.

If we take the simplest experiment, driving a single mode off resonantly, the x interaction
at fourth order approximation ends up every mode an AC Stark shift [26]. Driving the

n-th mode shifts the m-th mode by an amount

A = —Xnm|&nl?- (1.109)

Also, similar the multi-photon transitions of a single transmon, strong pumps can drive
multi-photon processes in the coupled circuit [26]. For example, a pump on mode n at a
frequency wy = 3(w,, — w,,) would make stationary any terms in the Hamiltonian of the

form

~

Hoap = —Xoum | A0 A + (€2 A0 A, (1.110)
We see that this Hamiltonian term can be used to swap single photons between modes, such

as the transmon and resonator, by exchanging energy with two probe photons (four-wave
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Figure 1.11: Josephson junction as a scattering site. Many Hamiltonian terms are dis-
carded by energy conservation considerations during the polynomial treatment of a Josephson
junction's cosine potential. However, in the presence of drives, these otherwise neglected
terms can dominant the evolution of the system. Pumping a single junction at multiple
frequencies can lead to a versatile set of mode conversions via many-wave mixing.

mixing). For a cold resonator with fast decay constant, this technique can be used for
to reset another mode [26]. Or, driven between two coherent modes, this pump can be
used for SWAP-based quantum logic [57]. Interestingly, these SWAP interactions typically
require resonant operation [57] (and thus frequency tunability), which can complicate
circuit implementations. Here, we get that physics ‘for free' from the quartic term of our
cosine expansion.

As another example, take the pump frequency wy = (2w, — w,). Energy-conserving

terms now include
Aoy = —Xoom lg (AnT)QA'm +e (An)z A},f} (1.111)

Just by changing the frequency of the pump, we have altered the four wave mixing such
that now one photon from mode m is converted to two photons in mode n and vice-versa,
by exchanging energy with a single pump photon. This parametric process was used in
Leghtas et al. [26] to drive an oscillator directly to a cat state.

There is an infinite number of interesting processes we can stimulate with many-wave
mixing [29]. The recipe is simple enough to be extended to even higher order terms beyond
quartic. These experiments will push the cosine expansion in new ways. Single Josephson
junction circuits seem to be an endless playing field for fundamental quantum optics.

Before diving into the physical implementation of these systems, the next chapter

explores the consequences of quantum information in resonators. Future chapters will
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discuss the specifics of transmon-resonator design Chapter 7?7 as well as techniques for
their fabrication and measurement Chapter ??. Then we will combine these ideas to

describe a novel type of quantum memory that has state-of-the-art coherence for cQED,

in Chapter 77.
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