
CS 269Q Lecture Notes (Lecture 12)

Robert S. Smith∗

These are notes for the 8 May 2019 lecture for Stanford’s CS 269Q course.
Questions, corrections, and comments are welcome!

Contents

1 Introduction 2

2 The Strong Compilation Problem 3

3 Compilation of Quantum Abstract Machines 4

4 The Instruction Set Architecture 7

5 Compilation Heuristics 9
5.1 Decomposition . 9
5.2 Routing . 11
5.3 Optimization . 12
5.4 Approximate Compilation . 12

6 Programs Below Quil 13

References 13

∗email: robert@rigetti.com

1

mailto:robert@rigetti.com

1 Introduction

On the face of it, “compilation” is a very simple idea. I, a programmer, want to
write my programs as easily as possible. My stubborn computer, however, only
executes a very low-level machine code. Regardless of whether the computer
is classical, quantum, or otherwise, a program called a compiler translates
what I’ve written into something that can be run.

Most programming language ecosystems, even notionally “interpreted” lan-
guages, have some sort of compiler. The cpython implementation of Python,
for instance, has a so-called bytecode compiler, that translates the Python into
a linear sequence of instructions to be run on a special machine made out of
software called the Python interpreter.

More familiar compiled languages, like C or Fortran, generally require the
explicit use of a compiler. You use something like gcc to translate the C code
into machine code your computer runs natively.

I’d like to share a little bit about compilers for quantum programming lan-
guages. Very excitingly, in the world of quantum software engineering, we are
seeing compilers slowly moving the goal posts of quantum advantage closer to
us. Industrial-strength quantum compilers are relatively new, but are paying
great dividends in our ability to both write and run code on quantum comput-
ers. I am one of the authors of quilc—Rigetti’s portable, open-source1, opti-
mizing, and fully automatic compiler for quantum computation. It has become
an essential element of our software development kit for all of the reasons
described hitherto.

Compilation of quantum programs serves two critical roles. First, it allows
us as programmers express programs with a broader set of primitives, since
quantum computers expose only a limited set of operations. Second, compila-
tion provides means for optimizing the program, generally making the program
shorter or make use or more efficient operations.

Optimizing compilers for classical programs are merely a convenience. An
optimized classical program may run in less time or consume less memory.
This, in turn, means that I, the programmer, have to wait less, or use a less
expensive computer, in order to accomplish the task I set out to do with the
classical computer. The optimization (usually) does not affect the correctness
or accuracy of the program.

However, in the case of quantum programs, optimization serves a much
more important role outside of providing convenience. While a quantum com-
puter is running, it decoheres due to natural effects, which causes the machine
to produce incorrect results with higher probability over time. For supercon-
ducting qubit processors, there’s an associated measure for this decoherence,
called the T1 and T2 times. Roughly speaking, these times put a bound on the

1https://github.com/rigetti/quilc

2

https://github.com/rigetti/quilc

amount of time a program can run before it produces bad results more than
50% of the time. Currently, T1 times sit around 1 to 100μs.

I won’t delve into the details as to why this time limit exists, except to say
one of the top areas of research is how to build machines that ever increase
this limit. Since the development of the first superconducting qubits, this time
has been improved exponentially, for a quantum-Moore’s-like law.

Anyway, a compiler has the role of optimizing your program, to potentially
take a long program and make it shorter, giving the programmer more freedom
and certainty that their program will run as best it can. We are going to first
look at the problem of compilation through a very “pure”, mathematical lens
for which theorems about their performance exist.

2 The Strong Compilation Problem

Relatively straightforwardly, we can encode the problem of compilation in the
language of mathematics of unitary operators. The usual compilation problem
goes something like this:

Problem 1 (The Strong Compilation Problem) Let G be a discrete and
finite subset of SU(2n) and let U ∈ SU(2n). Given a fixed but arbitrary ε > 0,
find a finite sequence of ℓ elements of G

V := gℓ · · ·g2g1

such that
mx
|ψ〉
‖(U − V) |ψ〉 ‖ < ε.

This problem is called “strong” because it must account for maximum error
across all possible states. It turns out that Solovay and Kitaev determined that
it is efficiently solvable, provided that the group generated by G is dense in
SU(2n) and that if g ∈ G, then g† ∈ G too.

Theorem 1 (Solovay–Kitaev[4]) The Strong Compilation Problem can be
solved with sequences of length ℓ ∈ O([log(1/ε)]c) where c > 3 in time
complexitya O([log(1/ε)]c) where c > 2.

aThese complexities are known as polylog, because they are polynomials of logarithms.

They proved this theorem constructively, meaning that the actual sequence of
gates to reconstruct U is computed. That method is called the Solovay–Kitaev
algorithm, and—in the grand scheme of all things quantum—is quite simple.

This theorem should be understood appropriately because it has a hidden
but nonetheless crucial detail. In the problem and the theorem, the value

3

of n—the number of qubits—is fixed. That is to say, it makes a statement
about the length of approximating n-qubit operators with a set of 1- to n-qubit
operators. If n is not fixed, then the complexity becomes O(2n[log(1/ε)]c). In
general, this is to be expected. The size of Hilbert space grows exponentially
with the number of qubits, so approximating many-qubit operators with few-
qubit operators requires an exponential number of them, and then some to
accommodate our bound on errors.

With that caveat in mind, this is a landmark theoretical result, as it shows
that the compilation problem is tractable on a classical computer. However,
the Strong Compilation Problem and Solovay–Kitaev find most of their popular-
ity in quantum error correction circles. A huge benefit of the Solovay–Kitaev
algorithm is that it only needs a finite set of gates. This is beneficial in the
study of quantum error correction because one can devise schemes to error-
correct exactly the gates in the gate set.

Solovay–Kitaev is more foreign to the scientists and engineers of NISQ2 de-
vices, however, because Solovay–Kitaev doesn’t take into account the facilities
and detriments of a NISQ system. On the plus side, many NISQ systems have
continuous families of gates available to them, such as Z-rotations, with vir-
tually perfect fidelity. On the minus side, NISQ devices and the associated
gates have noise, and the compilation procedure doesn’t take any of that into
account. As such, we file Solovay–Kitaev away as an important theorem that
provides a bright glimmer of hope for the aspiring quantum compiler devel-
oper.

From here, we will focus on understanding compilation that is perhaps more
appropriate for NISQ devices, and to do this, we will want the machinery of the
QAM.

3 Compilation of Quantum Abstract Machines

In the third lecture, you learned about the quantum abstract machine. This is
the funny six-tuple of information:

(|Ψ〉 , C,G,G′, P, κ).

Here, |Ψ〉 is our quantum state, C is our classical state, G is our set of static
gates, G′ is our set of parametric gates, P is a sequence of instructions com-
prising our program, and κ is where we are in the program. Because only
(|Ψ〉 , C, κ) change during the execution of P, we call that the state part of the
QAM. Suppose we have the following Quil program:

2“Near-term Intermediate Scale Quantum”

4

RZ(pi/2) 0
RX(pi/2) 0
RZ(-pi/2) 1
RX(pi/2) 1
CZ 0 1
RZ(-pi/2) 0
RX(-pi/2) 1
RZ(pi/2) 1
HALT

Loaded onto one of Rigetti’s freshly initialized eight-qubit Rigetti quantum
computers, this would represent the following quantum abstract machine, which
we will call M:

|Ψ〉 = |000000〉
C = 000000

G =
�

RX(± π
2){0,1,2,3,4,5,6,7},CZ{01,12,23,34,45,56,67,70}

	

G′ = {θ 7→ RZ(θ){0,1,2,3,4,5,6,7}}

P =

RZ(π2)0,RX(
π
2)0,RZ(−

π
2)1,RX(

π
2)1CZ01,RZ(−

π
2)0,RX(−

π
2)1,RZ(

π
2)1,HALT

�

κ = 0.

After undergoing the transition induced by P0 = RZ(π2)0, namely

(|Ψ〉 , C, κ)→
�

RZ(π2)0 |Ψ〉 , C, κ + 1
�

,

we have

|Ψ〉 =
�

1p
2
− 1p

2

�

|000000〉

C = 000000

G =
�

RX(± π
2){0,1,2,3,4,5,6,7},CZ{01,12,23,34,45,56,67,70}

	

G′ = {θ 7→ RZ(θ){0,1,2,3,4,5,6,7}}

P =

RZ(π2)0,RX(
π
2)0,RZ(−

π
2)1,RX(

π
2)1CZ01,RZ(−

π
2)0,RX(−

π
2)1,RZ(

π
2)1,HALT

�

κ = 1.

We of course would continue to transition this machine until it reaches a HALT3.
Let’s write this idea of “running a machine until it HALTs” with the function R .

3Recall that HALT induces the state transition

(|Ψ〉 , C, κ)→ (|Ψ〉 , C, κ),

which is to say that the machine does not continue execution, since κ does not change.

5

So, if you’ll take my word for it, RM is

|Ψ〉 = 1p
2
(|00000000〉+ |00000011〉)

C,G,G′, P = · · ·
κ = 8.

Given this is how we model computation, we are prepared to state another
kind of compilation problem in the context of a QAM. Roughly speaking, we
want to convert one QAM into another one with a different set of gates G,G′,
roughly having otherwise equivalent semantics. Ultimately, this gives rise to
the following problem:

Problem 2 (The Weak Compilation Problema) Let

Msource := (|Ψ〉 , C,Gsource, G
′
source

, Psource, κ)

and
Mtarget() := (|Ψ〉 , C,Gtarget, G

′
target

, , κ)

both be QAMs. Also let

M∗
source

:= RMsource and M∗
target

() := RMtarget()

whose quantum states are |Ψ∗
source

〉 and |Ψ∗
target

()〉 respectively. Then for

an arbitrary but fixed ε > 0, find a program  such that the respective
classical states are identical and

|Ψ∗
src
〉 − |Ψ∗

target
()〉

 < ε.

aThis statement of the problem is actually not entirely robust. What does non-
determinism mean, say with a measurement? How do we cope with it? In order to answer
these questions, and consequently make this problem statement more robust, we would
need to provide formal operational semantics to the quantum abstract machine, so that
we can reason about the equivalence of the non-determinism of quantum mechanics. This
also extends to reasoning about programs that have non-linear control flow, e.g., loops.
Despite its fragility, however, it’ll still serve useful for reasoning about different compila-
tion heuristics.

We can see that this problem is a lot more relaxed than the Strong Compilation
Problem. In particular, not only do we have to compile for just the specific state
of the QAM, we also (possibly!) get entire families of parametric gates at our
disposal. Both of these facts will prove to be helpful in compilation. Note that
we could strengthen the conditions of this problem to revert it to the Strong
Compilation Problem by universally quantifying over all |Ψ〉 and forcing G′ = ∅.

6

4 The Instruction Set Architecture

Physical quantum processors have physical constraints. For example, in su-
perconducting qubit systems, if two physical qubits are not near one another,
then it’s generally not possible for them to interact in a single, discrete oper-
ation. So while we might have a quantum computer that supports the CNOT
gate, we aren’t really being precise by saying that. Instead, we ought to say
something like “our computer supports a CNOT gate between qubits 1 and 0,
as well as between qubits 2 and 1.” More exotic gates, such as the Mølmer–
Sørensen gate[5] can operate on more than two qubits simultaneously. This
gate has the action of producing something like a GHZ-state:

|0〉⊗n 7→
eϕ0 |0〉⊗n + eϕ1 |1〉⊗n

p
2

.

The role of G and G′ in the QAM is to define precisely what the machine
supports. It turns out, “what the machine supports” also provides a certain
discrete structure to that machine. This structure is called the instruction set
architecture or ISA. Understanding the ISA gives rise to a topological under-
standing of the machine, and provides excellent supporting theory in the con-
struction of data structures a compiler might use. Moreover, knowing the ISA
makes formulating certain compilation questions a lot easier.

Because qubits can support operations, qubit pairs can support operations,
qubit triplets etc., we formally consider the ISA of a quantum abstract machine
to be a hyper-multigraph whose vertices are qubits and whose edges are pos-
sible operations on qubits. It is a hypergraph because we consider generaliza-
tions of edges, called “hyperedges”, which can connect multiple vertices. It is
a multigraph because there can be more than one hyperedge present between
vertices.

More specifically, we define an ISA as such:

Definition 1 (Instruction Set Architecture) An instruction set architec-
ture is a set of qubit labels V called the vertices, and a set of |V| hyperedges
which are mapsa

Ek :
�

V

k

�

→ (sets of k-qubit gates).

We call Ek a hyperedge of valence k. For a given set S ⊆ V, the gate
g ∈ E(S) if and only if g acts on the qubits of S non-trivially.

aThe notation
�S
k

�

is the set of k-element subsets of S.

In Quil, for n qubits, the vertex labels are V := {0,1 . . . , n − 1}. So we fix that
convention moving forward.

7

As shorthand, we might write this graph as (V, E) where E is understood
to be the |V|-tuple of hyperedges. For superconducting qubits, the valence is
usually limited to 2, that is, we only have one- and two-qubit gates4.

As a remark, for qubits p and q, if g1 ∈ E1({p}) and g2 ∈ E1({q}), we
generally do not regard g1⊗ g2 ∈ E2({p, q}), even though g1⊗ g2 is a perfectly
synthesizable operation.

The hyper-multigraph presentation of an ISA is useful for understanding at
a glance what a quantum abstract machine can do. It’s also nice because it
makes for drawing nice pictures; sometimes we talk about the qubit graph,
which is a traditional graph whose vertices are qubit labels and whose edges
represent the existence of any two-qubit gate between them. When we don’t
care so much about the topological structure, it’s useful to just bag everything
together. In fact, we recover the content of a QAM from an ISA:

G ∪G′ =
⋃

1≤≤|V|
H∈imgeE

H. (1)

What’s important to note—in the context of the specification of a QAM’s
ISA—is that there is no “ordained” CNOT gate. There are only CNOT gates that
act on vertices. Of course I’m speaking of CNOT as a placeholder for any usually
named gate. Consider the following three-qubit ISA whose only hyperedge is

E2 =

¨

{0,1} 7→ {CNOT10}
{1,2} 7→ {CNOT12}.

If qubits 0, 1, and 2 are residents of the Hilbert spaces B0, B1, and B2 respec-
tively, then we can fix a space for our system and associated basis. The space
we fix is

B2 ⊗ B1 ⊗ B0
along with its usual basis, for reasons described in [3]. We can then write the
gates in terms of matrices. These would be

CNOT10 = 2 ⊗







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







CNOT12 =







0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1






⊗ 0.

4This isn’t strictly true for superconducting qubits, and is certainly not true for other qubit
technologies like ion traps.

8

We can see that in this view, the notion of there being “a” CNOT gate melts
away. As a corollary, this also means that CZ01 and CZ10 are perfectly indistin-
guishable5.

We’ve defined what compilation means, and we’ve provided a few ways to
organize the structure of our gates, so we are prepared to attack some of the
problems of compilation.

5 Compilation Heuristics

Unlike the Strong Compilation Problem, there is no algorithm that solves the
Weak Compilation Problem wholesale. Instead, one uses a lot of heuristics,
especially making use of the ISA in said heuristics. This is not too different with
the state of affairs with usual classical compilers. A compiler like gcc employs
lots of different techniques to achieve compilation of C code to machine code.

In general, a heuristic function is a function that takes us from one QAM
to another. Solving the Weak Compilation Problem amounts to successively
selecting heuristics until we reach the final QAM. It might look something like
this:

Msource
ƒ0−→ M1

ƒ1−→ M2
ƒ3−→ · · ·

ƒn−→ Mtarget.

Each heuristic ƒ should be designed to either take us a few steps “closer” to
our target QAM, or to bring us to a more efficient QAM.

5.1 Decomposition

In essence, all compilation problems are decomposition problems; we wish to
express objects in one semantic domain as objects with equivalent properties
in another semantic domain. However, here, we mean something more spe-
cific, decomposition in a “truer” sense of the word. In the hyper-multigraph
view of a QAM, it might be that our source QAM has hyperedges whose va-
lence is larger than any of those in the target QAM. For instance, we might
write a program which uses the Toffoli gate

CCNOT := ( ⊗ ) ⊕ CNOT

whose valence is 3, but our target QAM only has one- and two-qubit gates.
The goal of decomposition is to re-express our high-valence gates in terms of
products of gates whose valences match the target gate set, without any other
specific regard to the target gate set. The heuristic would have the effect of
both transforming the program of the QAM, as well as the gate set. We move

5We will break away from this philosophy slightly when we talk about a compilation sub-
problem called “routing”.

9

“closer” to our target QAM because we’ve removed gates from our gate set
that perhaps don’t exist in the target.

There are many ways to perform these decompositions:

1. Algebraic identities,

2. Matrix factorization methods, and

3. The Solovay–Kitaev algorithm.

Algebraic identities are the simplest to explain, and often are extremely
effective in efficient compilation6. Fig. 1 shows an example decomposition of
CCNOT012 into the set

{CZ{01,02,12},RX(±π/2){0,1,2},RZ(±π/4){0,1,2}}.

Note the all-to-all connectivity of the qubits.

• • • • RZ(π4) •

• = • • RZ(π4) RZ(− π
4)

H RZ(− π
4) RZ(π4) RZ(− π

4) RZ(π4) H

Figure 1: A decomposition of CCNOT into six CNOT gates [6].

While this might not be a sufficient compilation for CCNOT for all target
QAMs, it certainly moves us a step closer7 to a final compilation.

Algebraic identities don’t provide a general means for decomposition, how-
ever, so we rely on other methods. Matrix factorization methods are deter-
ministic ways to recursively breaks larger matrices into smaller ones. In the
one-qubit case, one might use Euler decomposition, which is a factorization of
any unitary matrix into a sequence of three rotations. In its fundamental form,
one has

RZ(γ)RY(β)RZ(γ).
6They are so effective that quilc has easy ways to write and incorporate them them.
7We could formally state the transition as mapping a gate set G to

(G \ {CCNOT012}) ∪ {CZ{01,02,12},RX(±π/2){0,1,2},RZ(±π/4){0,1,2}},

and mapping CCNOTs of the program to their respective expansions.

10

In our Toffoli decomposition, there are a couple Hadamard gates that need to
be converted. The Hadamard gates have an Euler decomposition of

H = RZ(π/2)RX(π/2)RZ(π/2).

This formula needn’t be seen as magic; it can be understood perfectly in ana-
log to rotations in SO(3).

For more qubits, one has more complex methods. The cosine-sine decom-
position takes a unitary U ∈ SU(2n) and computes

U = (L ⊕ L′)eY⊗Δ(R ⊕ R′).

All L, L′, R, R′,Δ are matrices of half the dimension of U and Δ is diagonal. Re-
cursive application of this factorization to the left- and right-factors leads to an
expression which ultimately can be written as two-qubit controlled rotations.

An even simpler factorization, called quantum Shannon decomposition, fol-
lows a similar line of thinking. Both of these methods and more are described
in [7]. One should note that these methods compile n-qubit operators into
O(2n) two-qubit operators.

Provided we’ve used a collection of identities and decomposition methods,
we still aren’t in a form which will generally respect a QAM of interest. We
do have a program whose gates have the right target valences, but they’re
perhaps not gates that are available to us. This leads to the next problem of
quantum compilation.

5.2 Routing

Many QPUs have ISAs which are not a hodgepodge of gates. Often, there’s
regularity in the ISA. Rigetti’s chips, for example, support the same two-qubit
gates across each valence-2 edge, and the same one-qubit gates on each
qubit. This opens up a variety of compilation techniques, including routing.

Given a program in a QAM with all-to-all connectivity, we wish to compile
the program so it conforms to the given connectivity. This problem is relatively
simple when the program has gates whose matrices are found in the edges—
for one can often use a chain8 of SWAP gates—but more difficult when they’re
not. Suppose our gate set of our target QAM is

G ∪G′ = {RX(±π/2){0,1,2},RZ(θ){0,1,2},CNOT{01,12}}.

In the Toffoli gate example, there are two CNOT02 gates that need to be routed.
Routing the CNOT gate is also quite simple, though for different reasons, with

8More specifically, if one is compiling an operator Upq where there is no p–q edge, then one
can perform a series of SWAPs on qubits p and q so that U in effect operates on an edge that
does exist.

11

the identity:
CNOT02 = CNOT12CNOT01CNOT12CNOT01.

This identity can be used recursively for a longer-range CNOTs. All of these
identities, expansions, SWAP gates, etc. usually lead to redundant and ineffi-
cient code. This is where optimization is helpful.

5.3 Optimization

There are many optimization techniques for quantum programs. We will just
mention a few:

• Allocating qubits so that gates run more favorably, due to either their
connectivity to neighboring qubits.

• Collecting groups of instructions and searching for simple reducing iden-
tities, such as HH = I, RX(α)RX(β) = RX(α + β), and the like. These are
the quantum equivalent of peephole optimizations, but requires careful
attention because of the large amount of instruction parallelism in quan-
tum programming languages.

• Taking advantage of known quantum state preparations, so that e.g. when
an operator is acting on an eigenstate, that operator can be eliminated,
as with Z and the |0〉 state.

5.4 Approximate Compilation

Quantum computers are imperfect, and one can take advantage of these im-
perfections to do a better job compiling. While I might want the quantum
computer to execute a sequence of gates U :=

∏

U, it will in reality execute
the gates with some amount of error E, giving us the “actual” execution

V :=
∏



(U + E).

We can estimate the total error of the process with some selection of norm.
If ‖E‖ < ϵ, then we can say that the total error we will incur will be bounded
above by r :=

∑

 ϵ.
In some sense, this means that our “target” operation U has a sort of radius

r in which we will invariably land. If we can supply a different sequence of
gates that deliberately does not calculate U, but instead calculates some other
operator U′, so long as U′ has a smaller radius and is contained in V, we

12

have done better. More specifically, if we can supply some alternative set of
operations U′ :=

∏

U
′


such that its physical realization is

V′ :=
∏

(U′

+ E′


),

and if
‖U − U′‖ +

∑



‖E′

‖ < r,

then we have succeeded in optimizing U.
This isn’t some theoretical result, and an algorithm for doing so for two-

qubit gates is described in [2]. It is also implemented in quilc, which can use
measures of average gate fidelity of the available gate set.

Industrial-strength quantum optimizing compilers, such as quilc, contain
all of these methods and more, arranged cleverly so that you can convert just
about any QAM into a large collection of other QAMs, including all currently
known superconducting architectures.

6 Programs Below Quil

I want to end my section by talking a little bit about what happens to Quil
code when it’s about to be run. While it may seem like so, Quil isn’t quite
an assembly language, even if it’s written for the ISA of the physical device.
As such, there’s one more level of compilation that’s very close to traditional
assembling.

Superconducting qubits, at the end of the day, operate off of microwave
pulses and electrical currents. So any code written needs to turn into a se-
quence of pulse-firings or current-drives. These are controlled by a plurality of
processors which can—and do—operate on the QPU in parallel.

The waveforms are generally not as sophisticated as one might think. An
RX(π/2) gate corresponds to a waveform that looks something like sin(ωt)et

2
,

where ω is a frequency in the 5 GHz range. The Quil code

RX(pi/2) 3
RX(pi/2) 5

would assemble into two of these sinusoidal pulses that are fired synchronously
at qubits 3 and 5.

As a rule of thumb, one-qubit gates usually have a duration of around 20 to
50 ns, while two-qubit gates have a duration of around 80 to 200 ns. To me,
it is very remarkable that these gates-measured-in-nanoseconds can effect
change in a quantum state that cannot be stored on my laptop feasibly.

13

References

[1] Robert S. Smith, Michael J. Curtis, William J. Zeng. A Practical Quantum
Instruction Set Architecture. arXiv.org preprint. arXiv:1608.03355. 2016.

[2] Eric C. Peterson, Gavin E. Crooks, Robert S. Smith. Fixed-Depth Two-Qubit
Circuits and the Monodromy Polytope arXiv.org preprint. arXiv:1904.10541.
2019.

[3] Robert S. Smith. Someone Shouts |01000〉! Who’s Excited? arXiv.org
preprint. arXiv:1711.02086. 2017.

[4] Christopher M. Dawson, Michael A. Nielson. The Solovay–Kitaev Algorithm.
Quantum Information and Computation. 2005.

[5] Klaus Mølmer, Anders Sørensen. Multi-particle entanglement of hot
trapped ions. Physical Review Letters 82. 1999.

[6] Vivek V. Shende, Igor L. Markov. On the CNOT-cost of TOFFOLI gates. Quan-
tum Information and Computation. 2009.

[7] Vivek V. Shende, Stephen S. Bullock, Igor L. Markov. Synthesis of Quantum
Logic Circuits. IEEE Transactions on Computer-Aided Design, vol. 25, no. 6.
2006.

14

	Introduction
	The Strong Compilation Problem
	Compilation of Quantum Abstract Machines
	The Instruction Set Architecture
	Compilation Heuristics
	Decomposition
	Routing
	Optimization
	Approximate Compilation

	Programs Below Quil
	References

