Quantum computers are good at:

- Quantum physics
- Linear algebra
- Sampling
- Optimization
Quantum Machine Learning papers
Quantum Machine Learning

- AI/ML already uses special-purpose processors: GPUs, TPUs, ASICs
- Quantum computers (QPDUs) could be used as special-purpose AI accelerators
- May enable training of previously intractable models
New AI models

- Quantum computing can also lead to new machine learning models
- Examples currently being studied are:
 - Kernel methods
 - Boltzmann machines
 - Tensor Networks
 - Variational circuits
 - Quantum Neural Networks
LESSONS FROM DEEP LEARNING
Why is Deep Learning successful?

- Hardware advancements (GPUs)
- Workhorse algorithms (backpropagation, stochastic gradient descent)
- Specialized, user-friendly software
What can we leverage?

- Hardware advancements (GPUs + QPUs)
- Workhorse algorithms (quantum-aware backpropagation, stochastic gradient descent)
- Specialized, user-friendly software
TRAINING QUANTUM CIRCUITS
Key Concepts for QML

- Variational circuits
- Quantum circuit learning
- Quantum nodes
- Hybrid computation
Variational Circuits

- Main QML method for near-term (NISQ) devices
- Same basic structure as other modern algorithms:
 - Variational Quantum Eigensolver (VQE)
 - Quantum Alternating Operator Ansatz (QAOA)

I. Preparation of a fixed initial state

II. Quantum circuit; input data and free parameters are used as gate arguments

III. Measurement of fixed observable
How to ‘train’ quantum circuits?

Two approaches:

I. **Simulator-based**
 - Build simulation **inside existing classical library**
 - Can leverage existing optimization & ML tools
 - Great for small circuits, but **not scalable**

II. **Hardware-based**
 - **No access to quantum information**; only have measurements & expectation values
 - Needs to work as hardware becomes more powerful and **cannot be simulated**
Gradients of quantum circuits

- Training strategy: use gradient descent algorithms.
- Need to compute gradients of variational circuit outputs w.r.t. their free parameters.
- How can we compute gradients of quantum circuits when even simulating their output is classically intractable?
The ‘parameter shift’ trick

\[f(\theta) = \sin \theta \quad \Rightarrow \quad \partial_\theta f(\theta) = \cos \theta \]

\[\cos \theta = \frac{\sin \left(\theta + \frac{\pi}{4}\right) - \sin \left(\theta - \frac{\pi}{4}\right)}{\sqrt{2}} \]

\[\partial_\theta f = \frac{1}{\sqrt{2}} \left(f \left(\theta + \frac{\pi}{4}\right) - f \left(\theta - \frac{\pi}{4}\right) \right) \]
Quantum Circuit Learning

- Use the same device to compute a function and its gradient
 - “Parameter shift” differentiation rule: gives **exact gradients**
 - Minimal overhead to compute gradients vs. original circuit
 - Optimize circuits using **gradient descent**
 - Compatible with classical backpropagation: hybrid models are **end-to-end differentiable**

\[
\partial_{\theta} f(\theta) = c[f(\theta + s) - f(\theta - s)]
\]
Note: This is not finite differences!

\[\partial_\theta f(\theta) = c[f(\theta + s) - f(\theta - s)] \]

- Exact
- No restriction on the shift – in general, we want a *macroscopic* shift

\[\partial_\theta f(\theta) \approx \frac{f(\theta + h) - f(\theta - h)}{2h} \]

- Only an *approximation*
- Requires that \(h \) is small
- In subject to the quirks of numerical differentiation – stability, rounding error, truncation error
- For NISQ devices, small \(h \) could lead to the difference being swamped by noise
$f(\theta)$

$s = \pi/2$

$\theta - s$ $\theta + s$
Quantum Nodes

- Classical and quantum information are distinct

- QNode: common interface for quantum and classical devices
 - Classical device sees a callable parameterized function
 - Quantum device sees fine-grained circuit details
Hybrid Computation

- Use QPU with classical coprocessor
 - Classical optimization loop
 - Pre-/post-process quantum circuit outputs
 - Arbitrarily structured hybrid computations
PENNYLANE
PennyLane

“The TensorFlow of quantum computing”

- Train a quantum computer the same way as a neural network
- Designed to scale as quantum computers grow in power
- Compatible with Xanadu, IBM, Rigetti, and Microsoft platforms

https://github.com/XanaduAI/pennylane
https://pennylane.ai
Comes with a growing plugin ecosystem, supporting a wide range of quantum hardware and classical software.
PennyLane Example

\[|0\rangle \xrightarrow{R_x(\phi_1)} \xrightarrow{R_y(\phi_2)} \langle \sigma_z \rangle \]

Diagram showing two spheres and arrows indicating rotation axes and angles.
PennyLane Example
PennyLane Summary

- Run and optimize directly on quantum hardware (GPU→QPU)
- “Quantum-aware” implementation of backpropagation
- Hardware agnostic and extensible via plugins
- Open-source and extensively documented
- Use-cases:
 - Machine learning on large-scale quantum computations
 - Hybrid quantum-classical machine learning

https://github.com/XanaduAI/pennylane
https://pennylane.ai
Quantum Software Competition

A competition — with prizes of up to $1000 on offer — encouraging the use of quantum software across three areas: education, software development, and research.