 QuantumMachinelearning
. <~‘:"~NathanKiI.l\olran" < .

XANADU

Quantum computers are good at:

Quantum physics Linear algebra Sampling Optimization

Quantum Machine Learning papers

140 -
120 -

W —— I - I I |

2012 2013 2014 2015 2016 2017 2018
Year

—
o
o

Number of papers
S

8

3]

N
o

Quantum Machine Learning

« AlI/ML already uses special-purpose processors: GPUs, TPUs, ASICs

Quantum computers (QPUs) could be used as special-purpose Al
accelerators

May enable training of previously intractable models

Ay [Quantum
ASICs dev1ce$ FPGAs GPUs CPUs QPUs
o Y T e

New Al models

« Quantum computing can also lead to
new machine learning models

Examples currently being studied are:

- Kernel methods

- Boltzmann machines - 500 Dlar)
- Tensor Networks oo [T o D(sz) -
v
: . . . — S(rn) D(an) — 2(A\n) *, ‘w&
- Variational circuits i%’”

- Quantum Neural Networks]

LESSONS FROM

DEEP LEARNING

o R RRER 1 T

W~ - A g~ - WP——

Why is Deep Learning successful?

ij

e Hardware advancements (GPUSs)

N

e Workhorse algorithms Juattadel Sttty St
(backpropagation, stochastic A - T T o > >
gradient descent) ‘ | -

e Specialized, user-friendly software

O PyTorch ¥

TensorFlow

What can we leverage?

e Hardware advancements (GPUs + QPUs) “/////m\\\t\\\\"" ;

—

-

e \Workhorse algorithms

(quantum-aware backpropagation,
stochastic gradient descent)

e Specialized, user-friendly software

PENNYLANTE

/ / ///ﬂ»»

TRAINING

QUANTUM CIRCUITS
re L . @

Key Concepts for QML

Variational circuits o |

Quantum circuit learning

Quantum nodes

Hybrid computation

variational circuit

[0) — —
o U@L,
‘9)
circuit
[0) 10)
0| U@0+5) 0| Ul 0 —)

Variational Circuits

Main QML method for near-term (NISQ) devices

[
quantum |

variational circuit

Same basic structure as other modern algorithms: device | 13; U0)
o Variational Quantum Eigensolver (VQE)
o Quantum Alternating Operator Ansatz
(QAOA) _
. . .. (x,0)
Preparation of a fixed initial state '
Quantum circuit; input data and 10)—U (@1) o U U (B6)—0-
free parameters are used as gate 10) | U(06)-09-
arguments U (6s)
|0)—U (1) — — U (06)— 0
. l‘r
Measurement of fixed observable 0) | [eole-
U(05)
|0) —U (@) U(fs)— @~

(B)

= f(x:;8)

How to ‘train’ quantum circuits?

Two approaches:
. Simulator-based

- Build simulation inside existing classical library STRAWBERRY D

- Can leverage existing optimization & ML tools FIELDS
- Great for small circuits, but not scalable QuantumFlow

Il. Hardware-based

- No access to quantum information; only have (B
measurements & expectation values | quantum
- Needs to work as hardware becomes more powerful B2 S el rode
and cannot be simulated

classical
node

X

Gradients of quantum circuits V f

e Training strategy: use gradient descent algorithms.

e Need to compute gradients of variational circuit outputs
w.r.t. their free parameters.

e How can we compute gradients of quantum circuits when
even simulating their output is classically intractable?

The ‘parameter shift’ trick

f(0) =sinf@ = 0,5f(0) =cosb

Sin (9 +%) — Sin (9 — %)
V2

69f—\/i_<f(9+) - f(@—g))

cos @ =

Quantum Circuit Learning
« Use the same device to compute a function and its gradient

o “Parameter shift” differentiation rule: gives exact gradients
X

09 f(0) = c[f(0+s) — F(6 — s)]
o Minimal overhead to compute gradients vs. original circuit

o Optimize circuits using gradient descent

o Compatible with classical backpropagation: hybrid models are end-to-end
differentiable

Note:

This is not finite differences!

0pf(0) = c[f(0 + 5) — f(6 — 5)]

 Exact
* No restriction on the shift — in general,
we want a macroscopic shift

f@+h)—f(6—-h)
2h

dof(0) =

Only an approximation

Requires that h is small

In subject to the quirks of numerical
differentiation — stability, rounding error,
truncation error

For NISQ devices, small h could lead to
the difference being swamped by noise

f(6)

s=1/2

f(6)

Quantum Nodes

« Classical and quantum information
are distinct

o« QNode: common interface for
gquantum and classical devices

©)

Classical device sees a callable
parameterized function

Quantum device sees fine-grained circuit
details

l0[of]-

Classical Quantum
information information
~ Q. ®
- -[1[of]- - [l l l l
da w3

T — | quantum £(2,0)

’—n node

I
0 i
—— ——— e ~
/ i \
II (.0) quanFum |
| device 1
]

i |
H]
H]
i]
: B) = s0) |
i]
i]
i]
i]
H]
\ I
\ /7

Hybrid Computation

« Use QPU with classical coprocessor

o Classical optimization loop
o Pre-/post-process quantum circuit outputs
o Arbitrarily structured hybrid computations
L

=0

Ie>—"— 0 ﬂ

PennylLane

“The TensorFlow of quantum computing”

« Train a quantum computer
the same way as a neural
network

» Designed to scale as
quantum computers grow
N power

- Compatible with Xanadu,
IBM, Rigetti, and Microsoft
platforms

XANADU

PENNYLANE

Installation
Plug

Research and contribution

Introduction
Hybrid computation
Quantum nodes
Variational circuits
Quantum gradients

References and further reading

Basic tutorial: qubit rotation
Basic tutorial: Gaussian transformation

Plugins and Hybrid computation

Advanced Usage

Notebook downloads

Docs ' Pennylane Show Source / €) Show on GitHub
Release: 0.1.0
Date: 2018-11-07

PennyLane is a Python library for building and training machine Iearning models which include quantum computer
circuits.

Features

« Follow the gradient. Built-in automatic differentiation of
quantum circuits

« Best of both worlds. Support for hybrid quantum and
classical models

« Batteries included. Provides optimization and machine
learning tools

« Device independent. The same quantum circuit model can be
run on different backends

« Large plugin ecosystem. Install plugins to run your
computational circuits on more devices, including
Strawberry Fields and ProjectQ

Available plugins
« PennyLane-SF: Supports integration with Strawberry Fields,

afull-stack Python library for simulating continuous variable (CV) quantum optical circuits.

« PennyLane-PQ: Supports integration with ProjectQ, an open-source quantum computation framework that
supports the IBM quantum experience.

https://github.com/XanaduAl/pennylane

https://pennylane.ai

Comes with a growing plugin ecosystem, supporting a wide
range of quantum hardware and classical software

PENNY LANE OPylorch ¥ TensorFlow

STRAWBERRY . e _
FIELDS rigetti Forest @leklt

ﬁ NumPy =" Microsoft Q# I,:,zﬂ

PennylLane Example

|O> T Rx(qbl)

Ry (¢2)

z=10)

PennyLane Example

10)

aaaaa

PennyLane Summary

« Run and optimize directly on quantum
hardware (GPU—QPU)

+ "Quantum-aware” implementation of backpropagation

* Hardware agnostic and extensible via plugins

* Open-source and extensively documented

« Use-cases: ,
: : $in ()
o Machine learning on large-scale
160~_—0 p
lx-yi*

quantum computations Ix>—\—0

o Hybrid quantum-classical machine
learning

https://github.com/XanaduAl/pennylane
https://pennylane.ai @

@ i+ 2P=HY 5 \Wil)Eexplis*) ——
(X)XANADU
4 G Quantum Software P

S\ e Competition
[

:

-

- D r

” A competition — with prizes of up to $1000 on offer — -
encouraging the use of quantum so ftware across three @ &
aaaaa : education, software development, and research. -

II:X w

i l:"/;. - @@r\

