Quantum Machine Learning

Nathan Killoran

Quantum computers are good at:

Quantum physics

Linear algebra

Sampling

Optimization

Quantum Machine Learning papers

Quantum Machine Learning

- AI/ML already uses special-purpose processors: GPUs, TPUs, ASICs
- Quantum computers (QPUs) could be used as special-purpose Al accelerators
- May enable training of previously intractable models

New AI models

- Quantum computing can also lead to new machine learning models
- Examples currently being studied are:
- Kernel methods
- Boltzmann machines
- Tensor Networks
- Variational circuits
- Quantum Neural Networks

Why is Deep Learning successful?

Hardware advancements (GPUs)

 Workhorse algorithms (backpropagation, stochastic gradient descent)

Specialized, user-friendly software

What can we leverage?

Hardware advancements (GPUs + QPUs)

Workhorse algorithms
(quantum-aware backpropagation, stochastic gradient descent)

Specialized, user-friendly software

PENNYLANE

Key Concepts for QML

Variational circuits

Quantum circuit learning

Quantum nodes

Hybrid computation

Variational Circuits

- Main QML method for near-term (NISQ) devices
- Same basic structure as other modern algorithms:
 - Variational Quantum Eigensolver (VQE)
 - Quantum Alternating Operator Ansatz (QAOA)

- I. Preparation of a fixed initial state
- II. Quantum circuit; input data and free parameters are used as gate arguments
- III. Measurement of fixed observable

How to 'train' quantum circuits?

Two approaches:

- I. Simulator-based
 - Build simulation **inside existing classical library**
 - Can leverage existing optimization & ML tools
 - Great for small circuits, but **not scalable**

II. Hardware-based

- No access to quantum information; only have measurements & expectation values
- Needs to work as hardware becomes more powerful and cannot be simulated

Gradients of quantum circuits ∇f

Training strategy: use gradient descent algorithms.

- Need to compute gradients of variational circuit outputs w.r.t. their free parameters.
- How can we compute gradients of quantum circuits when even simulating their output is classically intractable?

The 'parameter shift' trick

$$f(\theta) = \sin \theta \implies \partial_{\theta} f(\theta) = \cos \theta$$

$$\cos \theta = \frac{\sin \left(\theta + \frac{\pi}{4}\right) - \sin \left(\theta - \frac{\pi}{4}\right)}{\sqrt{2}}$$

$$\partial_{\theta} f = \frac{1}{\sqrt{2}} \left(f \left(\theta + \frac{\pi}{4} \right) - f \left(\theta - \frac{\pi}{4} \right) \right)$$

Quantum Circuit Learning

- Use the same device to compute a function and its gradient
 - "Parameter shift" differentiation rule: gives exact gradients

- Minimal overhead to compute gradients vs. original circuit
- Optimize circuits using gradient descent
- Compatible with classical backpropagation: hybrid models are end-to-end differentiable

Note: This is not finite differences!

$$\partial_{ heta}f(heta)=c[f(heta+s)-f(heta-s)]$$

- Exact
- No restriction on the shift in general, we want a macroscopic shift

$$\partial_{\theta} f(\theta) \approx \frac{f(\theta+h) - f(\theta-h)}{2h}$$

- Only an approximation
- Requires that h is small
- In subject to the quirks of numerical differentiation – stability, rounding error, truncation error
- For NISQ devices, small h could lead to the difference being swamped by noise

Quantum Nodes

 Classical and quantum information are distinct

- QNode: common interface for quantum and classical devices
 - Classical device sees a callable parameterized function
 - Quantum device sees fine-grained circuit details

Hybrid Computation

Use QPU with classical coprocessor

Classical optimization loop

Pre-/post-process quantum circuit outputs

Arbitrarily structured hybrid computations

PennyLane

"The TensorFlow of quantum computing"

- Train a quantum computer the same way as a neural network
- Designed to scale as quantum computers grow in power
- Compatible with Xanadu, IBM, Rigetti, and Microsoft platforms

https://github.com/XanaduAl/pennylane https://pennylane.ai

Comes with a growing plugin ecosystem, supporting a wide range of quantum hardware and classical software

PENNYLANE O'PyTorch TensorFlow

STRAWBERRY FIELDS

PennyLane Example

PennyLane Example

PennyLane Summary

- Run and optimize directly on quantum hardware (GPU→QPU)
- "Quantum-aware" implementation of backpropagation
- Hardware agnostic and extensible via plugins
- Open-source and extensively documented
- Use-cases:
 - Machine learning on large-scale quantum computations
 - Hybrid quantum-classical machine learning

https://github.com/XanaduAl/pennylane https://pennylane.ai

