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Probability Distributions

A probabilistic system may be in an uncertain “probabilistic state”
such that after we “measure” it we find that it is in exactly one of n
mutually exclusive “definite states”.

Each definite state is associated with a real number pi ∈ [0, 1] such
that the probability a measurement finds the system to be in state i is
pi .

Since the definite states are mutually exclusive and we’re considering

all possible definite states, we have
n
∑

i=1

pi = 1.

Measurement turns any probabilistic state into a definite state
(measuring multiple times in a row gives the same answer every time)

We want to develop a convenient notation for manipulating these
(classical) probability distributions.
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Concrete Example: Loaded Dice

For example, our probabilistic system might be a loaded die with
faces labelled 1 through 6 and some probability pi for each face.

The definite states are the faces, and we can put the die into a
probabilistic state by rolling it without looking at the result.

We measure it by looking at the number on the top face, after which
the probabilistic state “collapses” into a definite state

It’s definite because we can look at the number on the top face as
many times as we like and we’ll observe the same number every time
(so long as nothing else perturbs it somehow).

What kinds of questions can we ask about such experiments?
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Questions We Can Ask About Loaded Dice

We note that each definite state is naturally associated with a real
number, namely the number on the face. We call these numbers
“observables” of the system.

What are the expected values of these observables? What are the
expected values of any function of these observables? What about
standard deviations?

What about probabilities and expected values of observables
corresponding to outcomes of multiple rolls?

What about for rolls of multiple differently loaded dice?

How do those answers change when we shift the distributions around?

We know how to solve simple probability word problems like these,
but we’d like to develop a notation to do all the bookkeeping for us.
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Creating Our Bookeeping Notation

We’ve been talking about particular probabilistic systems and states
they can be in, so our notation should allow us to easily name these
entities.

If our system is named ψ, we’ll denote by |ψ〉 the probabilistic state
that it’s in.

Definite states are particular kinds of probabilistic states where the
probabilities of being measured in other states is 0, so to be
consistent we should use the same notation for them.

Let’s denote the name of the i th definite state simply i , so that the
state itself is denoted |i〉.

The state |ψ〉 is completely specified by the probabilities pi , and we
want to keep track of which definite state each probability
corresponds to, so we’ll tag each pi with |i〉 and represent |ψ〉 by a
formal sum of these tagged probabilities:

|ψ〉 = p1|1〉 ⊕ p2|2〉 ⊕ ...⊕ pn|n〉
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More Bookkeeping

|ψ〉 = p1|1〉 ⊕ p2|2〉 ⊕ ...⊕ pn|n〉

At this point, this is a purely syntactic expression. We’re using
juxtaposition of probabilities and definite states as a way to tag those
probabilities with their corresponding definite states, and we’re just
using ⊕ to denote an unordered sequence of these tagged values.

Think of it as notation for a key-value store mapping definite states
to probabilities

We will end up adding useful structure to this notation by introducing
simplification/rewrite rules that “implement” the common
manipulations of probability distributions.

Now that we have a minimum viable representation of the state of
system ψ, we can start asking question about it and seeing if we can
encode the answers with additional notation and rewrite rules.
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Asking and Answering Questions With Notation

|ψ〉 = p1|1〉 ⊕ p2|2〉 ⊕ ...⊕ pn|n〉

The simplest thing we can do with a distribution is to get out one of
the probabilities of our choosing. So how should we denote “doing a
lookup” on this key value store?
Syntactically we can represent the question “What is the probability
of outcome j?” by 〈j |, and ask a state this question by juxtaposition
on the left, so that we can say that 〈j |ψ〉 = pj .
Let’s consider how that would work for definite states: we know that
the answer pj for state |i〉 is 1 if i = j and 0 otherwise, by the
definition of definite states.
So we have our first rewrite rule:

〈j |i〉 =

{

1 if i = j

0 otherwise
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Asking and Answering Questions With Notation

We want to be able to ask question 〈j | of any general probabilistic
state |ψ〉, but our first rewrite rule only applies to asking such
questions of definite states.

We want to add a rewrite rule that allows us to say:

〈j |ψ〉 = 〈j |(p1|1〉 ⊕ ...⊕ pj |j〉 ⊕ ...⊕ pn|n〉) = pj

We want every term besides the one with |j〉 to disappear.

We sense that our first rewrite rule might help us construct a new
rewrite rule, since it implements a kind of selection operation.
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Asking and Answering Questions With Notation

If we apply the first rewrite rule with 〈j | everywhere we can to |ψ〉, we
get:

p1〈j |1〉 ⊕ ...⊕ pj〈j |j〉 ⊕ ...⊕ pn〈j |n〉 = p10⊕ ...⊕ pj1⊕ ...⊕ pn0

Defining the juxtaposition of the numbers in each term to be scalar
multiplication and the ⊕ operation to be the usual addition operator
+ would allow us to simplify this expression to be pj , so we’ll make
those definitions and consider juxtaposition and ⊕ to be
multiplication and + from now on.

We’ll make the final connection allowing us to equate 〈j |ψ〉 with pj by
defining 〈j |ψ〉 to be the expression on the left hand side of the above
equation so that we have:

〈j |ψ〉 = 〈j |(p1|1〉+ p2|2〉+ ...+ pn|n〉)

= p1〈j |1〉+ ...+ pj〈j |j〉+ ...+ pn〈j |n〉

= p10 + ...+ pj1 + ...+ pn0 = pj
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Linear Algebra = Notational Bookkeeping

I hope it’s clear by now that the rewrite rules we came up with are the
notation and axioms of a finite dimensional vector space with standard
Euclidean metric. So from now on, regular vector space rules apply.

The definite state tags we started with can be interpreted as basis
column vectors, and the 〈j |’s as basis row vectors.

A probabilistic state is a linear combination of the basis outcome
vectors with coefficients being the corresponding probabilities.

The probability of a definite state is obtained by forming the inner
product of the probabilistic state vector with that definite state basis
vector: pj = 〈j |ψ〉.

If we denote by 〈u| the sum of the basis row vectors
n
∑

i=1

〈i |, then the

normalization condition that probabilities sum to 1 is written as
〈u|ψ〉 = 1.

This is called Dirac notation, and we call column vectors “kets” or
“ket vectors” and row vectors “bras” or “bra vectors”.
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Dirac Notation for Linear Operators

We can use outer products as an alternative notation to matrices for
representing linear transformations.

The matrix n × n matrix A with element aij at row i column j can be

represented using Dirac notation as
n
∑

i=1

n
∑

j=1

aij |i〉〈j〉.

Then if we have a state |ψ〉 =
n
∑

i=1

ψi |i〉, we have:

A|ψ〉 = (
n

∑

i=1

n
∑

j=1

aij |i〉〈j |)(
n

∑

k=1

ψi |k〉)

=

n
∑

i=1

n
∑

j=1

n
∑

k=1

aijψk |i〉〈j |k〉 =

n
∑

i=1

(

n
∑

k=1

aikψk)|i〉

The coefficients of the result are what you would get with
matrix-vector multiplication.
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Observables and Expectation Values

We can change |ψ〉 to a different but still well-normalized distribution
by acting with any linear operator S such that 〈u|S |ψ〉 = 〈u|ψ〉. This
will be true if 〈u|S = 〈u|, which means that S is a stochastic matrix
(columns sum to 1).

If state |i〉 is associated with an real observable mi , then its

expectation value is defined to be
n
∑

i=1

pimi .

This is similar to the sum for the normalization condition, but the
coefficients of each basis vector |i〉 has been multiplied by mi .

Algebraically, multiplying each component of the state vector by mi is
a linear operator that we can call M, so M|i〉 = mi |i〉 and the
expectation value of the observable is 〈M〉 = 〈u|M|ψ〉.
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Observables as Self-Adjoint Operators

M’s defining equation M|i〉 = mi |i〉 is an eigenvalue equation. M has
a set of orthonormal eigenvectors |i〉, i.e. the definite states, and real
eigenvalues mi .

Since definite states are eigenvectors of the observable M, what we’ve
been calling “definite states” are usually referred to as “eigenstates of
M”, but they are semantically identical concepts.

Observables with classical probability distributions are associated with
self-adjoint linear operators, but those operators are diagonal in the
basis of definite states, which is the only basis we ever care about
classically.
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Adjoints of Operators

Reminder: In usual vector notation, the adjoint of an n × n matrix A
is the matrix A† such that for any vectors x , y ∈ R

n we have
(Ax) · y = x · (A†y). Using transposes instead of dot product
notation, this says (Ax)⊤y = x⊤A⊤y = x⊤A†y . So A† = A⊤.

In general, the class of linear operators with real eigenvalues and
orthonormal eigenvectors is the class of self-adjoint operators with
respect to the inner product being used.

For real L2 norm these are the symmetric operators
For complex L2 norm these are the Hermitian operators

The fact that an operator has real eigenvalues and orthonormal
eigenvectors if and only if that operator is self-adjoint is (a special
case of) the Spectral Theorem.
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Composite Systems

We’re well equipped to manipulate probability distributions of systems
like biased coins, but would we handle multiple coins?

Let’s consider two coins |ψ〉 = ψT |T 〉+ ψH |H〉 and
|φ〉 = φT |T 〉+ φH |H〉.

The definite states for each coin are |H〉 and |T 〉, and we’ll denote
the four definite states of the composite system as |T 〉|T 〉, |T 〉|H〉,
|H〉|T 〉, and |H〉|H〉, with the ψ outcome on the left and φ on the
right.

For two independent sytems we use the rule that probabilities multiply
to write the composite state as
ψTφT |T 〉|T 〉+ ψTφH |T 〉|H〉+ ψHφT |H〉|T 〉+ ψHφH |H〉|H〉.
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Tensor Products for Joint States

ψTφT |T 〉|T 〉+ ψTφH |T 〉|H〉+ ψHφT |H〉|T 〉+ ψHφH |H〉|H〉

The above expression is syntactically what we want the result to be
when we combine states |ψ〉 and |φ〉.

“Multiplying” |ψ〉 and |φ〉 and simplifying the way you would expect
is the natural definition to make that yields the expression we’re after:

|ψ〉|φ〉 = (ψT |T 〉+ ψH |H〉)(φT |T 〉+ φH |H〉)

= ψTφT |T 〉|T 〉+ ψTφH |T 〉|H〉+ ψHφT |H〉|T 〉+ ψHφH |H〉|H〉

This product operation between ket vectors is called the tensor
product (or sometimes the Kronecker product), and it’s sometimes
denoted by ⊗, but we will usually denote the tensor product of, for
example, |0〉 and |1〉 by either |0〉|1〉 or |01〉. The tensor product of
two bra vectors is analogous.

It’s a way to keep track of element-wise multiplications.
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Tensor Products With Vector Notation

Using column vector notation for |ψ〉 and |φ〉, we can compute their
tensor product as follows:

(

ψT

ψH

)

⊗

(

φT
φH

)

=









ψT

(

φT
φH

)

φH

(

φT
φH

)









=









ψTφT
ψTφH
ψHφT
ψHφH









This notation exactly mirrors how we build probability trees:

ψT |H〉
ψHφH |H〉|H〉φH

ψHφT |T 〉|H〉φT
ψH

ψT |T 〉
ψHφH |H〉|H〉φH

ψTφT |T 〉|T 〉φT

ψT
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Tensor Products With Matrix Notation

The tensor product ⊗ of two linear operators A and B is defined to
be the bilinear operation that makes the following identity hold:

(A|ψ〉)⊗ (B |φ〉) = (A⊗ B)(|ψ〉|φ〉)

It works analogously to vector tensor products, as the following
example illustrates:

(

0 1
2 3

)

⊗

(

4 5
6 7

)

=









0

(

4 5
6 7

)

1

(

4 5
6 7

)

2

(

4 5
6 7

)

3

(

4 5
6 7

)









=









0 · 4 0 · 5 1 · 4 1 · 5
0 · 6 0 · 7 1 · 6 1 · 7
2 · 4 2 · 5 3 · 4 3 · 5
2 · 6 2 · 7 3 · 6 3 · 7








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What’s Different in Quantum Mechanics?

All of the math and notation we developed for manipulating
probability distributions using multilinear algebra carries over to the
quantum setting.

Instead of real probabilities between 0 and 1 that sum to 1, we use
complex numbers called amplitudes whose norms-squared are
interpreted as probabilities that sum to 1.

The normalization condition for an n-state quantum state

|ψ〉 =
n
∑

i=1

ψi |i〉 is
n
∑

i=1

ψ∗
i ψi = 1

Classically we had 〈u|ψ〉 = 1, but to add the extra ψ∗
i factors we need

to scale the i th coefficient of 〈u| by ψ∗
i .

Since this new bra vector depends on the coefficients of |ψ〉, we’ll call

it |ψ〉† = 〈ψ| =
n
∑

i=1

ψ∗
i 〈i | so that the normalization condition is

〈ψ|ψ〉 = 1. This allows us to define a complex L2 inner product of
states |a〉 and |b〉 as (|b〉)†|a〉 = 〈b|a〉 =

∑

i aib
∗
i .
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QM Continued

Whereas classically the normalization-preserving operators were
stochastic matrices, in QM they are the matrices U satisfying
〈ψ|U†U|ψ〉 = 〈ψ|ψ〉, i.e those operators such that
U†U = (U∗)⊤U = I , where I is the identity operator.

These matrices are called unitary matrices, and are the complex
analogue of orthogonal matrices.

Operators corresponding to observables are now Hermitian
(H† = (H∗)⊤ = H) rather than symmetric, and expectation values of
an observable M is now 〈ψ|M|ψ〉 rather than 〈u|M|ψ〉

As in the classical case, when a measurement is performed, the state
collapses to eigenstate |i〉 of the matrix with some probability, which
is calculated in the quantum case as |〈i |ψ〉|2. Continuing to measure
the observable always yields the same outcome.
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Different Eigenbases and Superposition

The weirdest thing about quantum mechanics that breaks drastically
from the classical case is the existence of observables with different
sets of eigenstates.

Algebraically, this means that whereas classically the observable
matrices were all diagonal and all commuted with each other
([A,B] = AB − BA = 0), quantum observable operators need not
commute with one another.

Measuring the state in one way might put the state in one state out
of a certain set of definite outcome states corresponding to that type
of measurement. The set of outcome states corresponding to different
kinds of measurements might be completely different.

An eigenstate of one observable might be a superposition of
eigenstates of another.

Measure property X and get result x1, measure another property Z

and get result z . Measuring X again might yield a result x2 6= x1.
This is very weird.
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Two physical principles

● Principle of relativity (Einstein)
○ All inertial observers equivalent (Galileo)
○ No information transmitted superluminally

● Principle of complementarity (Bohr)
○ Complementary properties not all known together
○ I.e., quantum mechanics (matrices don’t commute)

Now we’ll see a situation in which the 2nd seems to contradict the 1st.



EPR pairs (Bell states)

● Suppose 2 qubits are prepared as above, “entangled”
● One sent to Romeo and the other to Juliet

○ Zillion miles apart
● Question: what happens to Juliet’s bit if Romeo measures his to be 0? 1?



EPR pairs (Bell states)

● Answer: by QM, post measurement, Juliet’s bit is instantly in the same 
state as Romeo’s

● Telegraphy. But they’re so far apart. Superluminal flirtation. Contradiction.
● Why not contradiction?

○ Their love is so strong that nothing can keep them apart
○ JK. This isn’t legitimately transferring info. Romeo has no control 

over the measurement, both outcomes happen with 50% chance. 
Can’t use to send a love letter.

○ But we will presently see how entanglement can be exploited



Superdense coding
● We model each message in their courtship as 1 of 4 things:

○ Interest
○ Disinterest
○ Fluff (chatting about their day)
○ An invitation

● Thus classically, how many bits for each message?
○ 2 bits because 2^2 = 4
○ E.g. 00, 01, 10, 11 respectively

● We’ll show that by exploiting entanglement, we can get it done with 1 qbit 
per message



Superdense coding
● Question: compute the following.



Superdense coding
● Question: compute the following.

These are unitary and can be 
implemented w/ quantum gates.



Superdense coding
● On the other hand, show that all the 

Bell states are orthonormal (Ex. 2.69)
● What do we know about orthonormal 

states?
○ There’s a measurement 

distinguishing them.
○ Exercise: write down a unitary 

matrix M sending the 1st one to 
00, 2nd to 01, 3rd to 10, 4th to 
11. Express w/ quantum gates 
(later).



Superdense coding
Putting 2 and 2 together, this suggests the following 
communication scheme:
1. Prepare 2 qbits in state 
2. Send one to Romeo, one to Juliet
3. Romeo transforms the state according to the message he 

wants to send, using                       respectively 
○ Only has to operate on his own qbit

4. Romeo sends his qbit back to Juliet
5. Juliet performs a measurement, obtaining Romeo’s 

message from (3).

(4) takes time, so no superluminal flirtation. But only one qbit 
has to be sent -> superdensity.



Superdense coding

1. Prepare 2 qbits in state 00 :
2. Send one to Romeo, one to 

Juliet
3. Romeo transforms the state 

according to the message he 
wants to send

4. Romeo sends his qbit back to 
Juliet

5. Juliet performs a measurement, 
obtaining Romeo’s message 
from (3).

Question: is it secure? (Ex. 2.70)
● We mean: suppose Tybalt intercepts the qbit in 

transit in step (4).
● But his measurement operators have the form 

Mi = M’i ⊗ I
● Question: compute (2 ways) the measurement 

probabilities applied to the Bell states.
○ Can’t distinguish them. Secure.
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