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Mixed and Pure States

Pure states are definite quantum states where there is no uncertainty
as to which state the system is in. For example, if we know with
100% certainty that the state of the system is 1√

2
(|0〉+ |1〉), that is a

pure state.

For a mixed state, there is some uncertainty in the state of the
system, for example 50% odds of |0〉 and 50% odds of |1〉.
What, experimentally is the difference between these states? Don’t
they both give 50/50 odds to measure |0〉 or |1〉.
The difference is how they are affected by unitaries and their behavior
when measuring in different bases.
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Differences Between Mixed and Pure States

Apply an Ry (−π/2) =

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
gate to the mixed and pure

states.

The pure state in the |+ x〉 direction on the Bloch sphere gets
rotated to | − z〉 = |0〉, while the mixed state goes from 50/50 in
| ± z〉 to 50/50 in | ± x〉.
Now measure in the computational basis. The pure state is |0〉 with
probability 1 and the mixed state is still 50/50 between |0〉 and |1〉.
So amplitude distributions (pure states) are measurably different from
probability distributions over amplitude distributions (mixed states).

We’d like a common notation to describe and manipulate both types
of states.
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Ensembles of Quantum States

Consider a probability distribution over a set of pure states |ψi 〉 each
having a probability pi .

This distribution {pi , |ψi 〉} is called an ensemble of pure states.

Let’s find the distribution over outcomes if we make a measurement.

Let Mm denote the projection operator onto the subspace of states
that give measurement outcome of m (namely the eigenspace of Mm

with eigenvalue 1).

Recall that the probability of actually getting measurement outcome
m for state |ψi 〉 is ||Mm|ψi 〉||2 = 〈ψi |M†mMm|ψi 〉
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The Density Operator

Probability p(m|i) of getting result m if initial state was really |ψi 〉 is
just what we said before, and it’s just a number so it’s equal to its
trace:

p(m|i) = 〈ψi |M†mMm|ψi 〉 = tr(〈ψi |M†mMm|ψi 〉)

Marginalize over i to get total probability p(m):

p(m) =
∑
i

p(m|i)pi =
∑
i

pi tr(〈ψi |M†mMm|ψi 〉)

Simplify using the cyclic property of the trace (tr(ABC ) = tr(BCA))
and its linearity:

p(m) =
∑
i

pi tr(M†mMm|ψi 〉〈ψi |) = tr(M†mMm(
∑
i

pi |ψi 〉〈ψi |))

This shows that only the operator
∑
i
pi |ψi 〉〈ψi | is observable, and we

call this operator the density operator ρ of the ensemble.
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Properties of the Density Operator

An operator ρ is the density operator associated with some ensemble
{pi , ψi} if and only if it satisfies the conditions:

1 (Trace Condition) ρ has trace equal to one.

Proof of →: tr(ρ) =
∑
i

pi tr(|ψi 〉〈ψi ) =
∑
i

pi = 1.

2 (Positivity condition) ρ is a positive-semidefinite operator.

Proof of →: Suppose |φ〉 is an arbitrary vector in state space. Then

〈φ|ρ|φ〉 =
∑
i

pi 〈φ|ψi 〉〈ψi |φ〉 =
∑
i

pi |〈φ|ψi 〉|2 ≥ 0

Proofs of ← are on Page 101-102 of Mike and Ike.
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Measurement Operators for Density Operators

We saw that probability that result m occurs after a measurement is
p(m) = tr(M†mMmρ).

For a pure state |ψ〉, we know that the state immediately after
measuring and getting outcome m is Mm|ψ〉/

√
p(m). This means

that the density matrix becomes:

(
∑
i

pi (Mm|ψ〉)†(Mm|ψ〉))/p(m) =
M†mρMm

tr(M†mMmρ)

Since we’re guaranteed to get some measurement outcome, the
measurement operators satisfy the completeness equation∑
m

M†mMm = I .
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Pure vs Mixed Density Operators (Ex. 2.71)

Ex 2.71: (Criterion to decide if a state is mixed or pure) Let ρ be a density
operator. Show that tr(ρ2) ≤ 1 with equality if and only if ρ is a pure
state.

Since ρ is Hermitian, we can express it in terms of its spectral
decomposition as ρ =

∑
i
pi |ψi 〉〈ψi |.

The trace is the sum of the eigenvalues pi , which sum to 1.

The trace of ρ2 is the sum of the eigenvalues squared.

1 = (
∑
i
pi )

2 =
∑
i
p2i +

∑
i 6=j

pipj .

Thus
∑
i
p2i = tr(ρ2) ≤ 1, with equality only when

∑
i 6=j

pipj = 0, which

is to say there is only one non-zero probability pi equal to 1, meaning
the state is pure.
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Bloch Sphere for Mixed States (Ex 2.72) Part 1

Ex 2.72: (Bloch sphere for mixed states) The Bloch sphere picture for
pure states of single qubit was introduced in Section 1.2. This descriptions
has an important generalization to mixed states as follows.

1 Show that an arbitrary density matrix for a mixed state qubit may be
written as

ρ =
I + ~r · ~σ

2
=

1

2
(I + rxX + ryY + rzZ ),

where ~r is a real three-dimensional vector such that ||~r || ≤ 1. This
vector is known as the Bloch vector for the state ρ.
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Ex 2.72 Part 2

2 What is the Bloch vector representation for the state ρ = I/2?
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Ex 2.72 Part 3

3 Show that a state ρ is pure if and only if ||~r || = 1.
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Ex 2.72 Part 4

4 Show that for pure states the description of the Bloch vector we have
given coincides with that in Sectton 1.2.

|ψ〉 = cos
θ

2
|0〉+ e iφ sin

θ

2
|1〉
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Back to the First Example

Let’s revisit our motivating example of density matrices from the first
slide using what we now know.

Consider a pure state given by 1√
2
|0〉+ 1√

2
|1〉 and a mixed state that

is 50/50 between |0〉 and |1〉.
The density matrix for the pure state is

ρpure = (
1√
2
|0〉+

1√
2
|1〉)(

1√
2
〈0|+ 1√

2
〈1|)

=
1

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|)

=

(
1/2 1/2
1/2 1/2

)
Quiz: What is this state’s Bloch vector?
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Back to the First Example

We can pattern match

(
1/2 1/2
1/2 1/2

)
onto

I+~r ·~σ
2 = 1

2(I + rxX + ryY + rzZ ) by noticing that it’s 1/2(I + X ) and
conclude that ~r = (1, 0, 0).

If that wasn’t obvious, we can get components of a vector in the
usual way by using inner products with basis elements. In this case
the basis elements are {I ,X ,Y ,Z} and the inner product between
density matrices A and B is tr(AB).

rx = tr(ρpureX ) = 1

ry = tr(ρpureY ) = 0

rz = tr(ρpureZ ) = 0
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Back to the First Example

What about the density matrix for our mixed state?

ρmixed =
1

2
|0〉〈0|+ 1

2
|1〉〈1|

=

(
1/2 0

0 1/2

)
= I/2

So the mixed state’s Bloch vector is apparently (0, 0, 0). It is a point
at the origin of the Bloch sphere.
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Transformations of These States

How do these states behave under unitary transformations like the
Ry (−π/2) gate that we considered earlier?

Unitaries correspond to rotations on the Bloch sphere. A rotation of
−π/2 around the y-axis sends the vector (1, 0, 0) to (0, 0,−1), and
the point at the origin stays at the origin.

(0, 0,−1) corresponds to |0〉, so a measurement in the computational
basis gives |0〉 with probability 1 as before.

Since the mixed state is proportional to the identity, any unitary
acting on it will give U†ρmixedU = U†(I/2)U = I/2, so the density
matrix is unchanged. This is the maximally mixed state.

Jon Braatz CS 269Q: Section 3 April 27, 2019 16 / 17


