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1 More Bloch sphere

In Section 2, we found that for a point (x, y, z) on the Bloch sphere, we have
that (x, y, z) = (E(X),E(Y ),E(Z)).

It is not too hard to see that given any observable M = M†, the transfor-
mation |ψ〉 7→ exp(−iMt) |ψ〉 gives you a continuous family of unitary transfor-
mations that preserve the distribution of M as t sweeps over R. See the Section
2 notes for a proof.

Note that rotations by the x, y, z-axes must conserve their respective coordi-
nate, i.e. E(X),E(Y ),E(Z) respectively. Thus we find thatRx(θ) = exp(−iXθ/2)
where Rx(θ) is a counterclockwise rotation by angle θ about the x-axis on the
Bloch sphere. For the argument why t = θ/2 and the sign of t, see the Section
2 notes.

What about X,Y, Z themselves? Observe that

Rx(π) = exp(−iXπ/2) = cos(−π/2)I +Xi sin(−π/2) = −iX

which is physically identical to X, and thus the same point on the sphere. Here
we have used the result from Problem 2 on HW 1, since X2 = 1. Thus X,Y, Z
represent rotations by π about their respective axes.

As an exercise in this reasoning, we leave it to the reader to see that H
represents a π-rotation about the axis in the (1, 0, 1)-direction. Thus, we get
geometric interpretations of all the 2× 2 gates we have learned so far.

As a final note, consider time-evolution: what happens to a state |ψ〉 after
time t. We have that |ψ〉 7→ U(t) |ψ〉 where U(t) is unitary. Physically, the
quantity conserved under time-shifts is the energy, in QM the “Hamiltonian”
matrix H. So we find that U(t) = exp(−iHt/~), where ~ is the “reduced
Planck’s constant,” with units of energy times time. It must be included since
the argument of a transcendental function has to be unitless, which you can see
by expanding the function in a series: if the argument had any unit, then the
terms of the series would all have inconsistent units, which is bogus.
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2 Experiments to determine T1, T2

2.1 Intuition for relaxation times

What do the relaxation times T1, T2 correspond to in terms of building a quan-
tum computer? After times on the scale of T1, we expect a qubit just to end
up as |0〉. After times on the scale of T2, we expect qubits to lose their relative
phases. So T1 is how much time you have to make a measurement of a state,
and T2 is the time you have to do unitary operations (gates).

The analysis we’re going to go into now should make the experimental meth-
ods you’ve been given easier to understand.

2.2 NMR

To explain where the protocols you’re given to measure these times come from,
we’ll consider NMR (nuclear magnetic resonance, Nobel prize in 1944 and 1952)
experiments. Incidentally, the medical technique of MRI is the same thing—
they actually use the T1, T2 times to distinguish between different tissues, bone,
etc.

In these experiments, an ensemble of qubits is subjected to a strong static
magnetic field, let’s say in the z-direction so ~B = Bẑ. In this situation all their
Bloch vectors precess about the axis of the magnetic field, i.e. they start to
spin around it. We can see the reason for this “Larmor precession” as follows,
using the time evolution discussion above. We know that the |0〉 state is at
lower energy than |1〉. We can also see that |0〉 , |1〉 must be eigenkets of the
Hamiltonian (energy matrix) Hprecess, just from the symmetry of the scenario.
Thus H can be chosen proportional to −Z: −Z has −1, 1 on the diagonals
so this will give you an energy shift between the two states. Then the time
evolution is |ψ〉 7→ exp(icZt/~) for some c. This looks like Rz, so we get a
rotation about z-axis as time goes on, i.e. the precession.

Thus we can write the precession as |ψ〉 7→ Rz(ωdt) |ψ〉, with ωd some fre-
quency. This says that after a time t has passed, the state rotates through the
angle ωdt about the z-axis on the sphere. When t = 2π/ωd a complete cycle
has finished.

The Bloch vectors precess as above, but other things also act upon them
(thermal noise, couplings with environment, etc.) We model the effect of all
“other things” for a duration τ = 50 ns (the gate time) by simply applying
the noisy-I gate. Note that this application is nondeterministic, and we must
average results over many simulations (or over our ensemble). So, on average, we
have exp(−iHotherτ/~) = NOISY-I where Hother is the Hamiltonian responsible
for all “other things.” Raising both sides to t/τ , we see that the overall time
evolution here for time t is given by (NOISY-I)t/τ ; we just apply the noisy gate
for the appropriate number of times.

Thus combining the two effects, after a time t, we have |ψ〉 7→ exp(−i(Hother+
Hprecess)t/~) |ψ〉. Let us suppose additionally that, on average, noisy-I com-
mutes with Z. This is justifiable given the symmetry of the experiment about
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the z-axis. When matricesM1,M2 commute you have exp(M1+M2) = exp(M1) exp(M2).1

Then we can write the time evolution as just

exp(−iHothert/~)︸ ︷︷ ︸
(NOISY-I)t/τ

exp(−iHprecesst/~)︸ ︷︷ ︸
Rz(ωdt)

so the time evolution can be obtained by sequentially applying the noisy gate a
number of times, and then letting the precession happen (in either order, since
everything commutes).

It turns out that, by applying pulses—magnetic fields oscillating at suitable
frequencies—we can effect ops like Rx(π) and Rx(π/2) on the qubits. In our
experiments, we interleave pulses and periods of free evolution (precession and
noise).

2.3 Measuring T1

Now our protocol will be as follows:

1. Pulse Rx(π) = X.

2. Free evolution for time t:

(a) Noisy-I, applied t/τ times.

(b) Precess for t: apply Rz(ωdt).

3. Measure qubit

Repeating the experiment, we obtain the probability of ending up in |1〉 (i.e.,
measuring that Z is −1) at the end. Phenomenologically fit this probability by
a decay A exp(−t/T1) + C. Note that step 2b can have no effect on the final
result, since Rz commutes with the measurement Z. Thus we can just remove
it, as was done in the earlier spec.

2.4 Measuring T2

1. Pulse Rx(π/2).

2. Free evolution for time t:

(a) Noisy-I, applied t/τ times.

(b) Precess for t: apply Rz(ωdt).

3. Pulse Rx(π/2).

4. Measure qubit

1We also used this in showing that the complex exponentials give you unitary transforma-
tions that preserve an observable. Exercise: derive a formula for exp(M1) exp(M2) involving
exponential of an infinite series of nested commutators when M1,M2 do not commute.
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What do we expect to see here? Let’s set t = 0. Then step (1) takes the state to
(0,−1, 0) on the sphere, step (2) does nothing, and step 3 takes us to (0, 0,−1).
The probability here of getting 1 is 1, so plot the point (0, 1) on the graph.
What if t = π/2ωd? Let’s also imagine for now that step 2a does nothing, that
there is no noise. Step 2b results in a rotation by π/2 around z, so by now
the state is at (1, 0, 0). But the step 3 pulse has no effect on this state. So the
probability we get here is 1/2. Continuing this reasoning, at t = π/ωd we have
a probability of 0, at 3π/2ωd a probability of 1/2 again, and 2π/ωd back to the
beginning.

Now we add in the noise. After a long time, the noise (2a) tends to take us
back to |0〉. 2b has no effect on this state, and 3 sends it back to the equator of
the sphere. Thus after a long time, the probability goes to 1/2.

We can therefore fit the curve by

A exp(−2t/T2) sin(ωdt− φ) + C

note that we have added in a factor of 2 in front of the time. This is to make
T1, T2 comparable based on the heuristic reasoning that T1 should be about
twice as long as T2 (decay requires moving from one pole to the other on the
sphere, while the latter is just moving from the equator to a pole).

We can guess what most of these parameters should be, which may help you
when curve fitting. We leave it to the reader to use the considerations in the
above discussion to find initial guesses for the parameters above.

Because of the different pulses used here (steps 1, 3) compared to the T1
experiment, note that the precession (step 2b) cannot be removed without af-
fecting the resulting curve.

2.5 Choosing ωd

Physically, ωd is fixed by the magnetic field strength B0. You have the freedom
to choose it in your assignment. How should we choose a good one? We basically
don’t want it to be too big or too small. Note that if the last time in any of
your experiments is T , then by that time the curve above undergoes ωdT/2π
oscillations, since it takes the sine 2π in its argument for one complete cycle.
Choose an ωd that makes it so that you just have a handful of oscillations
between the beginning and the end of the experiment.
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